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Preface 

Many of the problems facing physicists, engineers, and applied mathematicians 
involve such difficulties as nonlinear governing equations, variable coefficients, 
and nonlinear boundary conditions at complex known or unknown boundaries 
that preclude solving them exactly. Consequently, solutions are approximated 
using numerical techniques, analytic techniques, and combinations of both. 
Foremost among the analytic techniques are the systematic methods of per
turbations (asymptotic expansions) in terms of a small or a large parameter or 
coordinate. This book is concerned only with these perturbation techniques. 

The author's book Perturbation Methods presents in a unified way an account 
of most of the perturbation techniques, pointing out their similarities, differences, 
and advantages, as well as their limitations. Although the techniques are described 
by means of examples that start with simple ordinary equations that can be 
solved exactly and progress toward complex partial-differential equations, the 
material is concise and advanced and therefore is intended for researchers and 
advanced graduate students only. The purpose of this book, however, is to 
present the material in an elementary way that makes it easily accessible to 
advanced undergraduates and first-year graduate students in a wide variety of 
scientific and engineering fields. As a result of teaching perturbation methods 
for eight years to first-year and advanced graduate students at Virginia Poly
technic Institute and State University, I have selected a limited number of 
techniques and amplified their description considerably. Also I have attempted 
to answer the questions most frequently raised by my students. The techniques 
are described by means of simple examples that consist mainly of algebraic and 
ordinary-differential equations. 

The material in Chapters 3 and 15 and Appendices A and B cannot be found 
in Perturbation Methods. Chapter 3 discusses asymptotic expansions of integrals. 
Chapter 15 is devoted to the determination of the adjoints of homogeneous 
linear equations (algebraic, ordinary-differential, partial-differential, and integral 
equations) and the solvability conditions of linear inhomogeneous problems. 
Appendix A summarizes trigonometric identities, and Appendix B summarizes 
the properties of linear ordinary-differential equations and describes the symbolic 
method of determining the solutions of homogeneous and inhomogeneous 
ordinary-differential equations with constant coefficients. 
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viii PREFACE 

The reader should have a background in calculus and elementary ordinary-
differential equations. 

Fach chapter contains a number of exercises. For more exercises, the reader 
r. iclcncil lo Perturbation Methods by Naylch and Nonlinear Oscillations by 
Nayleh and Mook. Since this book is elementary, only a list of the pertinent 
books is included in the bibliography without any attempt of citing them in 
the text. 

I am indebted to K. R. Asfar and D. T. Mook for reading the whole manuscript 
and to L. Watson, M. Williams, C. Prather, S. A. Ragab, I. Wickman, A. Yen, 
Y. Liu, H. Reed, J. Dederer, Y. Ma, and W. S. Saric for reading parts of the 
manuscript. Many of the figures were drawn by T. H. Nayfeh, K. R. Asfar, 
I. Wickman, T. Dunyak, and T. McCawly; and I wish to express my appreciation 
to them. Finally, I wish to thank Patty Belcher, Janet Bryant, and Sharon 
Larkins for typing the manuscript. 
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CHAPTER 1 

Introduction 

1.1. Dimensional Analysis 

Exact solutions are rare in many branches of fluid mechanics, solid mechanics, 
motion, and physics because of nonlinearities, inhomogeneities, and general 
boundary conditions. Hence, engineers, physicists, and applied mathematicians 
are forced to determine approximate solutions of the problems they are facing. 
These approximations may be purely numerical, purely analytical, or a combina
tion of numerical and analytical techniques. In this book, we concentrate on the 
purely analytical techniques, which, when combined with a numerical technique 
such as a finite-difference or a finite-element technique, yield very powerful and 
versatile techniques. 

The key to solving modern problems is mathematical modeling. This process 
involves keeping certain elements, neglecting some, and approximating yet 
others. To accomplish this important step, one needs to decide the OKteiof 
magnitude (i.e., smallness or largeness) of the different elements of the system 
by comparing them with each other as well as with the basic elements of the 
system. This process is called nondimensionalization or making the variables 
dimensionless. Consequently, one should always introduce dimensionless 
variables before attempting to make any approximations. For example, if an 
element has a length of one centimeter, would this element be large or small? 
One cannot answer this question without knowing the problem being con
sidered. If the problem involves the motion of a satellite in an orbit around the 
earth, then one centimeter is very very small. On the other hand, if the problem 
involves intermolecular distances, then one centimeter is very very large. As a 
second example, is one gram small or large? Again one gram is very very small 
compared with the mass of a satellite but it is very very large compared with the 
mass of an electron. Therefore, expressing the equations in dimensionless form 
brings out the important dimensionless parameters that govern the behavior of 
the system. Even if one is not interested in approximations, it is recommended 
that one perform this important step before analyzing the system or presenting 
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2 INTRODUCTION 

experimental data. Next, we give a few examples illustrating the process of 
nondimensionalization. 

I X A M I ' I . I ' 1 

We consider the motion oi a particle of mass m restrained by a linear spring 
having the constant k and a viscous damper having the coefficient /u, as shown in 
Figure 1 -1. Using Newton's second law of motion, we have 

d u du 
m —=- + n — + ku — 0 

dt2 dt 
(1.1) 

where u is the displacement of the particle and t is time. Let us assume that the 
particle was released from rest from the position u0 so that the initial conditions 
are 

u(0) = uo 

du 

dt 
(U) = 0 (1.2) 

In this case, u is the dependent variable and t is the independent variable. They 
need to be made dimensionless by using a characteristic distance and a character
istic time of the system. The displacement u can be made dimensionless by using 
the initial displacement u0 as a characteristic distance, whereas the time t can be 
made dimensionless by using the inverse of the system's natural frequency co0 = 
y/k/m. Thus, we put 

t*=CJ0t 

where the asterisk denotes dimensionless quantities. Then, 

du _d(u0u*) dt* _ du* 

dt dt* ~ dr^iF 

so that (1.1) becomes 

d2u . d2u* 
-r = u>t>u0 

dt' dt*2 

Figure I -1 . A mass restrained by a spring and a viscous damper. 



DIMENSIONAL ANALYSIS 3 

Hence. 

or 

where 

. d2u* du* 
mco0w0 -j~2- + HOJQUQ — + ku0u* = 0 

d2u* du* k 
+ ju* + rw* = 0 dt*2 dt* mu>l 

d2u* ^du* ^ „ . 
_ + — + u - 0 (1-3) 

mtoQ 

In terms of the above dimensionless quantities, (1.2) becomes 

w * ( 0 ) = l and ^ ( 0 ) = 0 (1.5) 
dt* 

Thus, the solution to the present problem depends only on the single param
eter fj*, which represents the ratio of the damping force to the inertia force or 
the restoring force of the spring, if this ratio is small, then one can use the 
dimensionless quantity ju* as the small parameter in obtaining an approximate 
solution of the problem, and we speak of a lightly damped system. We should 
note that the system cannot be considered lightly damped just because \i is 
small; fi* - u/mco0 = \x\yfkm must be small. 

EXAMPLE 2 
Let us assume that the spring force is a nonlinear function of u according to 

/spring =ku + k2 u2 (1.6) 

where k and k2 are constants. Then, (1.1) becomes 

d7u du , . , _ 
m — T + H — + ku + k2u2 = 0 (1.7) 

dt2 dt 

Again, using the same dimensionless quantities as in the preceding example, we 
have 

d2u* du * 
mu0G>l —j + fjtu0 w 0 — + ku0u* + k2ulu*2 = 0 

dt* dt* 

or 

file:///x/yfkm


4 INTRODUCTION 

d2u* du* 
+ H* + u* + e w * 2 = 0 (1.8) dt*2 ' dt* 

where 

A:2 Wo 
i * = 

mco0 

and e = - ~ (1.9) 

The initial conditions transform as in (1.5). Thus, the present problem is a func
tion of the two dimensionless parameters /i* and e. As before, u* represents the 
ratio of the damping force to the inertia force or the linear restoring force. The 
parameter e represents the ratio of the nonlinear and linear restoring forces of 
the spring. 

When we speak of a weakly nonlinear system, we mean that k2u0/k is small. 
Even if k2 is small compared with k, the nonlinearity will not be small if u0 is 
large compared with kjk2. Thus, e is the parameter that characterizes the 
nonlinearity. 

EXAMPLE 3 
As a third example, we consider the motion of a spaceship of mass m that is 

moving in the gravitational field of two fixed mass-centers whose masses m, and 
m2 are much much bigger than m. With respect to the Cartesian coordinate 
system shown in Figure 1-2, the equations of motion are 

d2x mmlGx mm2G(x-L) 
m!F = ~ (x2 +y2)3'2 ' [(x - L)2 +y2}3!2 ( U 0 ) 

d2y _ mmxGy mm2Gy 
m dt2 " 0 c 2 + 7 2 ) 3 / 2 _ l(x-L)2+y2}3'2 U U 

where / is the time, G is the gravitational constant, and L is the distance between 
rnx and m2. 

In this case, the dependent variables are x and y and the independent variable 
is /. Clearly, a characteristic length of the problem is L, the distance between the 
two mass centers. A characteristic time of the problem is not as obvious. Since 

! 

Figure 1-2. A satellite in the gravitational field of two fixed mass centers. 
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T = 
\fG{mx +m2) 

so that the frequency of oscillation is 

co0 = L~m V G ( m , + m 2 ) (1.12) 

Thus, we use the inverse of co0 as a characteristic time. Then, we introduce di
mensionless quantities defined by 

x* = ~ y* = ~ t* = oo0t 0-13) 
L 

so that 

dx d(x*L) dt* dx* (Px.^ 2 dhc* 

dt~ dt* dt = L < ° ° dt* dt2 ' 0 dt*2 

dy _d(y*L) dt* _ dy* d2y _ 2 d2y* 

dt = dt* dt " ^° dt* dt2 ~ "° dt*2 

Hence, (1.10) and (1.11) become 

d2x* _ mmxGLx* mm2GL{x* - 1) 
mLcoo 

dt*2 [L2(x*2 +y*2)]3'2 [L2(x*- l ) 2 + L2y*2)3t2 

2 d2y* _ mrriyGLy* mm^Ly* 

dt*2 [L2(x*2 + y*2)]3'2 [L2{x*- l ) 2 + L2y*2}312 

or 

d2x* _ miG x* m2G (x* - I) 

dt*2 = " L3032
0 (x*2 +y*2fl2 ~ L*u2

0[(x*~ l ) 2 + j > * 2 ] 3 ' 2 ( ' } 

d2y* _ miG y* m2G y^ 
dt*2 ~~ L3u2

0(x*2 +y*2Y'2 ~ L3u\ [ ( * * - 1 ) 2 + ^ * 2 ] 3 / 2 1 ' ' 

Using (1.12), we have 

m, G m | w 2 G m2 

Hence, if we put 

the motions of the masses and m2 are assumed to be independent of that of 
the spaceship, mx and m2 move about their center of mass in ellipses. The 
period of oscillation is 

2nL3'2 
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and (1.14) and (1.15) become 

d2x* _ ( l - e ) j c * e(x*-l) 

dt*2 (x*2 + y+2)3'2 [(x* - I)2+y*2)312 

d2y* = (1 - e)y* cy* 
dt*2 " (x*2 +^*2 ) 3/ 2 ~ [ ( * * - l ) 2 +>;*2] 3/2 

(1.17) 

(1.18) 

Therefore, the problem depends only on the parameter e, which is usually 
called the reduced mass. If mx represents the mass of the earth and m2 the mass 
of the moon, then 

JL 
80 1 

80 

which is small and can be used as a perturbation parameter in determining an 
approximate solution to the motion of a spacecraft in the gravitational field of 
the earth and the moon. 

EXAMPLE 4 
As a fourth example, we consider the vibration of a clamped circular plate of 

radius a under the influence of a uniform radial load. If w is the transverse 
displacement of the plate, then the linear vibrations of the plate are governed by 

DV4w- PV2w- p — = 0 (1.19) 

where t is the time, D is the plate rigidity, P is the uniform radial load, and p is 
the plate density per unit area. The boundary conditions are 

dw „ 
w = 0 — = 0 at r-a 

dr 
0 .20) 

w < °° at r = 0 
In this case, w is the dependent variable and t and r are the independent 

variables. Clearly, a is a characteristic length of the problem. The characteristic 
time is assumed to be T and it is specified below. Then, we define dimension
less variables according to 

^ w ^ r t 
w* = — r* = — t* - — 

a a T 

Hence, 



DIMENSIONAL ANALYSIS 7 

Since 

dw _ d(aw*) dr* _ dw* 

dr Br* dr dr* 

dw d(aw*) dw* 

30 d0~~ " " "dT 

dw _ d(aw*) dt* _ a dw* 

dt~ dt* ~dt~T~dt* 

V 2 =i_+H.+lil 
dr2 r dr r2 30: 

w 

(1.19) becomes 

D_ / a 2
 t i 9 | i a 2 \ 2

 # /> / a 2
 | i d t 1 d2 \ 

a3 [dr*2 + r* dr* + r * 2 302J W ' a \dr*2 + r* dr* + r * 2 30 2 / 

pa d2w* 

- f2~dt*2 

or 

= 0 

D . _ oa2 3 2 w * 
— V V - V * ^ * — - = 0 (1.21) 
a2P PT2 dt*2 K } 

We can choose T to make the coefficient of d2w*/dt*2 equal to 1, that is, 
T = a\fpJP. Then, (1.21) becomes 

e V * 4 w * - V * 2 w * - ^ T = 0 (1.22) 

where 

a 2 P 

In terms of dimensionless quantities, the boundary conditions (1.20) become 

dw* 
w* = — ~ = 0 at r* = 1 

d r * (1.24) 
w * < o o at r* = 0 

Therefore, the problem depends on the single dimensionless parameter e. If the 
radial load is large compared with D\a2, then e is small and can be used as a 
perturbation parameter. 
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EXAMPLE 5 
As a final example, we consider steady incompressible flow past a flat plate. 

The problem is governed by 

bu bv _ 
— + — = 0 (1.25) 
bx by 

( bu bu\ bp (b2u b2u\ , „ 

T S ^ - a ^ U ^ v ) ( 1- 2 6 ) 

/ bv bv\ bp (b2v b2v\ 

( " ^ ^ y - v y ^ i ^ ^ ) (1-27> 
P [u 

u = v = 0 at y - 0 

u-*Uco,v-+Q as x -+ -°° 
(1.28) 

where u and v are the velocity components in the x and y directions, respec
tively,/? is the pressure, p is the density, and p. is the coefficient of viscosity. 

In this case, M, v, and p are the dependent variables and x andjy are the inde
pendent variables. To make the equations dimensionless, we use L as a charac
teristic length, where L is the distance from the leading edge to a specified point 
on the plate as shown in Figure 1-3, and use £/«, as a characteristic velocity. We 
lake pUl> as a characteristic pressure. Thus, we define dimensionless quantities 
according to 

* - v * ? * x * y 
u JJI v K p pHi x I y I 

> 

bu _b(U„u*)dx* bu* bu _ bu* b2u U„ b2u* 

bx bx* dx L bx* by~~ ' L by* bx2 '' L2 bx*2 

b2u (/oo b2u* 

dy2 L2 by*2 

>y.v 

•x,u 

Figure 1-3. Flow past a flat plate. 
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du = Ux dv* du = U„ dv* d2v _ Ux d2u* d2v _U„ d2v* 

dx~ L dx* dy " L dy* dx2 " L2 dx*2 dy2 ~ L2 dy*2 

dp _pUl dp* dp _ pUj dp* 

dx~ L dx* dy~ L dy* 

Hence, (1.25) through (1.28) become 

U„ du* Uoo dv* 
+ = 0 (1.29) 

L dx* L dy* K } 

pUl du* pUl ^du* pUldp* pU^fd2^ d2u*\ , 

— " 3 ^ + — v * d T * = - — d T * + i y [ d ^ + d ^ ) ( 1 3 0 ) 

pUl dp* pU00fd2v* d2v*\ 

L dy*+ L2 \dx*2+dy*2) ( } 

pul a«* Pul dv* 
u + v* 

L dx* L dy* 

u* = v* = 0 a t ;>*=0 

UcoU*-+ Ua„,v*-+Q as **->--< 

Equations (1.29) through (1.32) can be rewritten as 

du* dv* 

(1.32) 

dx* + dy~*=° ( 1 3 3 ) 

du* du* dp* 1 d2u* d 2 „ , „ „ ^ 
u +v* = - - i _ + _ ( - + (1.34) 

dx* dy* dx* R\dx*2 dy*2' v ' 

u*\ 

*2 J 
1 fd2v* d2v*\ 

R \dx*2+ dy*2} 

dv* dv* dp* . . . _ _ . . 
u* +v* = --£- + - [ - + (1.35) 

dx* dy* dy* n 1 *2 ^-*2 ' v ' 
u*=v*=0 at y* = 0 (1.36) 

M * - » l V*-+Q as x*-*-<*> (1-37) 

where 

(1.38) 

is called the Reynolds number. 
Equations (1.33) through (1.37) show that the problem depends only on the 

dimensionless parameter R. For the case of small viscosity, namely p. small com
pared with pUcJL, R is large and its inverse can be used as a perturbation param
eter to determine an approximate solution of the present problem. This process 
leads to the widely used boundary-layer equations of fluid mechanics. When the 
flow is slow, namely pU^L is small compared with u, R is small and it can be 
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used as a perturbation parameter to construct an approximate solution of the 
present problem. This process leads to the Stokes-Oseen flow. 

1.2 Expansions 

In determining approximate solutions of algebraic, differential, and integral 
equations or evaluating integrals, we need to expand quantities in power series 
of a parameter or a variable. These power series expansions are usually obtained 
either as binomial expansions or Taylor series. These are explained next. 

BINOMIAL THEOREM 

Using straight multiplication, we have 

(a + b)2 =a2 +2ab + b2 

(a + b)3 =a3+3a2b + 3ab2+b3 

(a + bf = a 4 + Aa3b + 6a2 b2 + 4ab3 + b* 

The process can be generalized for general n as 

v„ „ i n(n - 1) „ , , n(n-\)(n-2) „ , , 
(a + b)n =an +na" lb + — Lan'2b2 + — P 1 an 3b3 + • • • 

2! 3! 

(1.39a) 

which can be rewritten as 

(* + *)" = t ,^"-mbm (1.39b) 

or 

(a + b)"= y nCman-mbm where nCm = — 7 ^ — - (1.39c) 
m = o m\(n-m)\ 

It turns out that (1.39a) terminates and hence it is valid when n is a positive 
integer. If it does not terminate, it is valid for any positive or negative number n 
provided that I bla I is less than 1; otherwise, the series diverges because 

wthterm ,. (m- l)ln(n- 1) (n - 2) • • • (n-m + \)an~mbm 

hm — = lim ------- ' m > o . ( m - l)thterm m.<-m!w( ,?- 1) (n - 2) • • • {n - m + 2)an~m + ibm~1 

,. (n - m + l)b b -
- hm = — 

m > « > ma a 

For example, 
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= a 5 + 5a* h + \Qa3b2 + \0a2b3 + Sab* + b5 

m ^ 0 w ! ( 6 - m ) ! 

= a6 + 6osfc + 15o4/>2 + 20a3fc3 + 15a2 6 4 + 6a!>5 + ft6 

(a + z>y/2 = a1/2 + ia-1/2/, + <i2Li>tf-3/afra + (DH ) ( - f ) - s ; * ^ + . . . 

2 2! 3! 

= a1'2 + \ a~l'7b - | a~3'2b2 + ±a'sl2b3 + • • • 

o + b r - -a-2b+fc2£2 , - +
( - 1 ) ( - 2 ) ( - 3 ) , - 4 . 3

 + • • • 
2! 3! 

= a~l -a~2b + a-3b2 -a~*b3 + ••• 

We note that the first two series corresponding to n = 5 and 6 terminate. The 
last two series corresponding to n = \ and -1 do not terminate, and hence, they 
are valid only when \b\<\al 

TAYLOR SERIES EXPANSIONS 
If a function/(x) is infinitely differentiable at x =x0, we express it in a power 

series of (x - x0) as 

f(x)=a0+at(x - x0) + a2(x - x0)2 +a3(x- x0)3 + ••• 

= ±an(x-xor (1.41) 

where the an are constants related to / and its derivatives at x = x0. Putting x = 
x0 in (1.41), we find that a0 - f(x0). Differentiating (1.41) with respect to x, 
we have 

f'(x)=a1 +2a2(x- x 0 ) + 3 a 3 ( x - x0)2 + 4a4(x-x0)3 + ••• (1.42) 

which, upon putting x = x0, yields ax = f'(x0). Differentiating (1.42) with 
respect to x, we have 

/ " ( * ) = 2!a2 + 3la3(x - x0) + 4 • 3a4(x - x0)2 + ••• (1.43) 

which, upon putting x = x0, yields o 2
 = (1/2!) f"{x0). Differentiating (1.43) 

with respect to x gives 

/ " ' ( * ) = 3!fl3 + 4 ! f l 4 ( x - j c 0 ) + - - ' 0-44) 
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which, upon putting x = x0, yields a3 = (1/3!) f"\xQ). Cuntinuing the process, 
we obtain 

« . - j j j / * 0 ! * . ) / ( , " = 0 0-45) 

and = f(x0). Therefore, (1.41) can be rewritten as 

00 f^(x^ 

m^j:J—^-{x-x0r 0 .46) 
rt = 0 n -

which is called the Taylor series expansion of / (x ) about x - x0 • 
Since 

d 
— (sin x) = cos x and — (cos x) =- sin x 

dx 

we have 

Since 

2! 4! 6! „4i (2fl)1 

1! 2! 3! ^0n\ K ' 

Since 

— [ln(l + x ) ] = (1 +X)-1 -^-(1 + x ) " " = - / t ( l + X ) - " - 1 

dx dx 

l n ( l + x ) = x - — + — - — + • • - = V ^ — (1.50) 
2 3 4 „ « , " 

The above Taylor scries expansions arc frequently used in subsequent chapters. 

1.3. Gauge Functions 
In this book, we are interested in the limit of functions such as /(e ) as e 

tends to zero, denoted by e 0. This limit might depend on whether e tends to 



zero from below, denoted by et , or from above, denoted by e i . For example, 

l i m e _ 1 / e = 0 l ime - ' /^oo 

•J 

In what follows, we assume that the parameters have been normalized so that 
e > 0. If the limit of / (e ) exists (i.e., it does not have an essential singularity at 
e = 0 such as sin e~x), then there are three possibilities 

/ (e ) + 0 
f(e)-+A\ as e ->0, 0<A<°° (1.51) 
/ ( e ) - * 0 0 . 

Most often, the above classification is not very useful because there are in
finitely many functions that tend to zero as e -+ 0. For example, 

lim sin e = 0 lim (1 - cos e) = 0 
e * 0 e+O 

lim (e - sin e) = 0 lim [ln(l + e ) ] 4 = 0 (1 52) 
e* 0 c+0 

lim e'll€ = 0 
e * 0. 

Also, there are infinitely many functions that tend to 0 0 as e -* 0. For example, 

lim —— = 0 0 lim e + o sin e e+b 1 - \ e 
2 (1.53) 

lim e 1 ^ lim In — = 0 0 

c*o e*o e 

Therefore, to narrow down the above classification, we subdivide each class 
according to the rate at which they tend to zero or infinity. To accomplish this, 
we compare the rate at which these functions tend to zero and infinity with the 
rate at which known functions tend to zero and infinity. These comparison func
tions are called gauge functions. The simplest and most useful of these are the 
powers of e 

l , e , e 2 , e 3 , - • • 

and the inverse powers of e 

For small e, we know that 

1 > e > e 2 > e a > e" > • 

and 

e"1 < e - 2 < e " 3 < e - 4 < - - - ^ < * 
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hm = lim + — + • • = 
e + o e e*o \ 3! 4! / 

Using (1.48), we have 

1 - cos e = + 
2! 4! 

so that 1 - cos e -* 0 as e 2 -*• 0 because 

1 - cos e , ( 1 e 2 \ 1 
hm 5 = hm — - — + • • • = — 

( . o e 2 « . o \ 2 ! 4! / 2! 

Using (1.47), we have 

e 3 e 5 

e _ s i n c = ^ " 7 i + " 

so that e - s i n e - » * 0 a s e 3 - * 0 because 

,. e - sin e ,. /1 e 2 \ 1 
bm ; = hm I + •••} = — 
e.o e 3 - « . o \ 3 ! 5! / 3! 

Using (1.50), we have 
[ l n ( l + e ) ] 4 = ( e - y + 

so that [ln(l + e ) ] 4 0 as e 4 -* 0 because 

lim t — ^ — — = hm 1 — + — + • • • } =1 
e*o e 4 e + o \ 2 3 / 

To determine the rate at which exp (- 1/e) -*• 0 as e -*• 0, we attempt to expand 
it in a Taylor series for small e. To accomplish this, we need the derivatives of e 
at e = 0. But 

ne)=^7-1=\e->" (1.54a) 
ae e 

which, at e - 0, gives 0 over 0. Hence, we need to use l'Hospital's rule to deter
mine its limit as e 0. Thus, 

Let us determine the rate at which the preceding functions tend to zero or 
infinity. Using the Taylor series expansion (1.47), we have 

3 S 7 
sin e *• c * + ~ + • • • 

3! 5! 7! 

so that sin e -*• 0 as e -* 0 because 
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e~ll€ x2 

lim / ' (e ) = lim — — = lim x2e'x = lim — 
e*0 e*0 €" x * *> x •* «> e 

which, upon differentiating the numerator and denominator twice with respect 
to x, gives 

lim / ' (e ) = lim \ = 0 
e * 0 x * °° e 

Hence, 

/ ' (0 ) = 0 (1.54b) 

Differentiating (1.54a) with respect to e, we have 

A O = ( j r - p ) < - , / € (1.55a) 

Hence, 

/ " (0 ) = 0 

because 

x 4 - 2x 3 .. 4! 
lim ( ~ - ^ ) e - l ^ = Um 
€ + o \e e J / x*~ 

= lim — = 0 
ex x * <*> e* 

according to THospital's rule. Differentiating (1.55a) with respect to e gives 

Hence, 

because 

/ " ' ( 0 ) = 0 (156b) 

lim ( ~ 
e*o \e 6 

6 6\ . l e , x 6 - 6 x 5 + 6 x 4 

+ -T ) e 1 / e = hm • - 6 e s eV" x~- e* 

6! 
= lim — = 0 

x * 00 €T 

according^to l'Hospital's rule. Continuing the process, we find that 

/ ( w ) ( 0 ) = 0 (1.57) 

for all n. Therefore, it follows from (1.46) that 

e - i/ « = 0 + 0 + 0 + 0 + -- -



which is certainly not true. The function exp (- l/e) cannot be represented by a 
power series in e. In fact, it tends to zero faster than any power of e because 

lim n - - lim — = km -7 = 0 

according to THospital's rule. Therefore, the powers of e are not complete and 
must be supplemented by exp (-1/e). 

Next, we consider the rates at which the functions in (1.53) tend to 0 0 . Using 
(1.47), we have 

1 1 1 

sin e e 
e + . . . e J + 

3! V 3! 
so that (sin e ) - 1 0 0 as e~l because 

i- l t s i n € v 6 i- 1 1 
lim — - — = lim = hm : = l 
c*o l/e e + osine e * 0 e 

l + • • • 
3! 

Using ( l .48), we have 

l - I e2 - cose e 4 e 6 

2 + — + . . . 
4! 6! 

so that ( l - ~ e2 - cos e ) " 1 - 0 0 as - e~ 4 because 

o W - i e 2 - c o s e e 4 / e*o e 4 e 6 

1 ' + — + • • • 
4! 6! 

- 4 ! 
lim 5 = - 4 ! 
c *o e 

1 + • • • 
30 

Since exp (-l/e) tends to zero faster than any power of e, exp ( l/e) tends to 
infinity faster than any inverse power of e because 

ex,€ ex cx 

lim — 7 — = lim — = lim —7 = 0 0 

e *o l/e x * « x x * ~ n\ 

according to l'Hospital's rule. Therefore, we need to supplement the gauge 
functions by exp ( l/e) . The function In ( l/e) tends to infinity as e •+ 0 more 
slowly than any power of e _ 1 , that is, e " ° , no matter how small a is because 



hm — — — = lim —- = km —r = — hm — = 0 
e + o e x + °° x x + °° x • ax ocx + °° x 

Therefore, we need to supplement the gauge functions by In (1/e). 
Similarly, we need to supplement the gauge functions by [In (1/e)] _ l to rep

resent the functions that tend to zero more slowly than any power of e,that is 
e a , no matter how small a is as long as it is positive. The above discussion shows 
that, to obtain a complete set of gauge functions, the powers of e must be 
supplemented by logarithms, exponentials and 

1.4. Order Symbols 

Instead of saying that sin e tends to zero at the same rate that e tends to zero, 
we say sin e is order e as e -> 0 or sin € is big " oh " of e as e -+ 0 and write it as 

In general, we put 

if 

Thus, as e -> 0, 

sin e = 0 ( e ) as e-*-0 

m = 0[g(e)] as €->0 (1.58) 

l i m ^ ~ l = A 0 < U I < < » (1.59) 
c * 0 £ (e ) 

cose = 0 ( 1 ) cose - 1 = 0 ( e 2 ) 

sinh e = 0(e) tan e = 0 ( e ) 

cosec e = 0 ( e _ 1 ) sec e = 0 ( 1 ) 

cote = 0 ( e _ 1 ) = 0 ( e 1 / 2 ) 
sin e 

s i nh - = 0 ( e 1 / e ) sech - = 0(e~1/e) 
e e 

It should be noted that the above mathematical order expressed by the symbol 
O is formally distinct from the physical order of magnitude because no account 
is taken of the numerical value of A, that is, the constant of proportionality. 
Thus, Ae = 0 ( e ) even if A is a hundred thousand. However, one has the mystical 
hope that they are somehow related. In other words, one has the hope that the 
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constants of proportionality are 0 ( 1 ) so that the numerical value is not very 
much different from that given by the order symbol. 

In many instances, the information available about a given function may be 
incomplete to determine the rate at which it tends to its limit but sufficient 
to determine whether the rate is faster or slower than that of a given gauge 
function. In such instances, we use the order symbol o (little oh) defined as 
follows 

if 

Thus, as e-*•(), 

/ (e ) = o [*(€)] as e - *0 (1.60) 

e*o g(e) 

sin e = o ( l ) sin e = o ( e ' / 2 ) 

cos e = o ( e M ) cos e = o ( e - ^ 3 ) 

e - i/« = o ( e - 1 0 " 8 ) = o(el'e) 

e 
= o ( e - ° 0 0 0 0 1 ) l n l n -

e 
.„(„!) 

? 2 / * = c , ( / / C ) n̂iy = o ( e - 0 . 0 0 0 0 , 

1.5. Asymptotic Series 

We consider the value of the integral 

/(co) = ^~dx (1.62) 
J 0 CO+. X 

for large positive co. One method of determining an approximation to /(co) is 
Laplace's method, which is discussed in Section 3.3. It consists of expanding the 
coefficient of exp (-x) in powers of x and then integrating the resulting series 
term by term. Using the binomial theorem, we have 

= 1 . £ + £ l . F L + . . . a f H ) " * " 0 6 3 ) 

co + x l + c o _ I x CO co2 co3 ^ 0 co" 

which converges for x < co. The basic idea underlying Laplace's method is that 
exp (-x) tends to zero faster than any power of x tends to infinity for large x. 
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Hence, only the immediate neighborhood of the origin contributes to the inte
gral when co is large. Substituting (1.63) i n t o (1.62), we have 

/(to) - 2- — - ~ n — d x = E "TP ] x e dx 

But, 

when w is an integer. Therefore, 

« = o w 

Using the ratio test in (1.64), we have 

nth term ( - c o " " " 1 , -n 
lim — = lim 7TT = hm — = ~°° 

n*oo (n - l)th term M * - C J " ( - 1 ) " l(n-l)\ n + ~ co 
Hence, the series (1.64) diverges for all values of co. To investigate whether 
(1.64) is of any value for computing /(co), we determine the remainder if we 
truncate the series after N terms. To do this, we note that 

n=0 CO 

is a geometric series whose sum is 

r _ V , N + l 

I " ! 

X 
1 + -

CO 

Hence, 

where 

co * (-ivy A , ^ 

CO T X 

RM -
Uy U y ( - ^ r * 1 

co+x x t x u> (co+x) 
1 + — 1 + — v 7 

CO CO 



Therefore, 

" " ( - l ) " x " , ( - * ) " * ' 

Multiplying (1.65) with exp (-*) and integrating the result from x = 0 to x = «>, 
we obtain 

Jo 0 J + X « = o w J o 

or 

where 

^ (-\)nn\ 

n=0 w 

CO J0 GJ+X 

We note that the remainder is a function of both TV and co. 
Instead of using the ratio test, one can check the behavior of/?^(co) for fixed 

co as N -+ <». In order for the series to converge, lim must be zero. This is 
N * °o 

not true in our example; in fact,/?^ -* °° a s N - * • 0 0 so that the series diverges for 
all values of co in agreement with the result of the ratio test. Thus, if the series 
(1.66) is to be useful, TV must be fixed. Hence, let us investigate the behavior 
of RN(CS) for fixed N. To accomplish this, we need to estimate RN(w). 

Since co and x are positive 

1 • < ! 
CO + X X 

and then 

1 f ° ° xN*le~x 1 f°° A" 
\RN(CJ)\ = — — - dx<-N xNe-xdx = -jj (1.68) 

CO Jf. CO+JC CO Jn CO 

Hence, the error committed in truncating the series after N terms is numerically 
less than the first neglected term, namely the (N + l)th term. Moreover, as 
co -*• °° with N fixed, RN -* 0. Therefore, although the series (1.64) diverges, for 
a fixed N the first TV terms in the series can represent /(co) with an error that can 
be made arbitrarily small by taking co sufficiently large. Such a series is called 
an asymptotic series of the Poincare type and is denoted by 



00 ( - 1 W 
/ ( w ) ~~ £ ^JT- 0-69) 

In general, given a series S ^ = 0 (<z„/con), where <zn is independent of co, we say 
that the series is an asymptotic series and write 

as c o - « (1.70) 
n = 0 CO 

//and only if 

N a„ I 1 \ 

n-0 > / 

It follows from (1.71) that 

, ^ an aN I l \ 
as co -* 0 0 

Hence the condition (1.71) can be rewritten as 

N ' 1 a„ ( 1 \ 

/ M - Z T ^ b r ) 0-72) 

We should note that the utility of an asymptotic series lies in the fact that the 
error committed in truncating the series is by definition the order of the first 
neglected term, and hence, it tends rapidly to zero as co °°. In applications, one 
usually fixes co at a large value and attempts to reduce the error by adding more 
terms. But if the series is divergent, a point is reached beyond which adding 
terms increases rather than decreases the error, as illustrated in Figure 1-4. 
Therefore, for a given co there is an optimum value of N, which yields the 

2 4 6 8 10 12 
n 

Figure 1-4. Behavior of terms in a divergent asymptotic series. 
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smallest error. In practice, one rarely determines more than one or two terms in 
the expansion, and hence, one need not worry about the divergence of the 
series. In the cases in which many terms can be calculated, they are usually 
obtained by performing the algebraic manipulations on a digital computer. The 
series is then examine*d to reveal its analytic structure, and then, it is trans
formed appropriately using rational fractions, natural coordinates, or the Euler 
transformation. Improvement of divergent series is not discussed in this book 
and we refer the reader to van Dyke (1975) and his references. 

1.6. Asymptotic Expansions and Sequences 

As shown in Section 1.3, there are many functions whose behavior cannot be 
represented in terms of a power series of the small parameter. Moreover, we 
found that the powers e must be supplemented by its logarithm, exponential, 
logarithm of its logarithm, and so on. Thus, to determine an asymptotic repre
sentation of a given function, we may be unable to use powers of e alone. In
stead, we can use a general sequence of functions 5„ (e ) as long as 

M 0 B « [ 5 » - . ( « ) ] as e - 0 0-73) 

Such a sequence is called an asymptotic sequence. Examples of such asymptotic 
sequences are 

en e" / 3 ( l n e ) " " (s ine)" ( c o t e ) ' " (1.74) 

In terms of asymptotic sequences, we can define asymptotic expansions as 
follows. Given Z^=o a„5„ (e ) , where the an are independent of e and 6„ (e ) is an 
asymptotic sequence, we say that this expansion is an asymptotic expansion and 
write 

/ (e ) ~ £ ) anhn(e) as e->0 (1.76) 
n = 0 

Clearly, an asymptotic series is a special case of an asymptotic expansion. 
We note that an asymptotic representation of a given / (e ) is not unique. In 

fact, / (e ) can be represented by an infinite number of asymptotic expansions 
because there exists an infinite number of asymptotic sequences that can be 
used in the representation. However, given an asymptotic sequence 6„ (e ) , the 
representation of / (e ) in terms of this sequence is unique as shown below. Let 
us put 

/ W - . , 8 o ( « ) + « i f i i ( f ) + « i * i ( « ) + " 1 (1.77) 

Dividing (1.77) by 5 0 ( e ) , we have 

M O 5 0 ( e ) 5 0 ( e ) 
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which, upon letting e 0, yields 

a0 = lim — — because lim w •- = 0 for « > 1 
e ' 0 0 0 ( e ) 6 *o5 0 ( e ) 

Moving a 0 6 0 ( e ) to the left and dividing the resulting equation by 61 (e ) , we have 

m-a080(e) S 2 ( e ) 
~ c , + a*, h • • • 

which, upon letting e -* 0, yields 

/ ( e ) - a 0 6o (e ) 
a t = lim — - — 

e *o 5 j ( e ) 

Continuing the process, we find that 

n-l 
/ ( e ) - £ a m 8 m ( 6 ) 

* « = lim ^ ~ (1.78) 
e *o S„ (e ) 

1.7. Convergent Versus Asymptotic Series 

In Chapter 13, we determine the two different representations 

J0(x)~y— [ u c o s ( x - \ 7 r ) + u s i n ( x - \ it)} as x -> °° (1.81) 
y itx 

where 

l 2 • 3 2 l 2 • 3 2 • 5 2 • 7 2 

M ( X ) = 1 ~ 4 2 - 2 2 . 2 ! X 2 + 4<-2<-4bc< + ' " ( L 8 2 ) 

1 l 2 - 3 2 - 5 2 

w 4 - 2 * 4 3 - 2 3 - 3 ! x 3 

of Bessel's function of order zero. The series (1.80) is uniformly and absolutely 
convergent for all values of x, whereas the series u(x) and u(x), and hence, 
(1.81) diverge for all values of x. However, the representation (1.81) is asymp
totic because the error committed by truncating the series is the order of the 
first neglected term. 

For small x, the first few terms in (1.80) give fairly accurate results. In fact, 
the first nine terms give a value of J0(2) correct to. 11 significant figures. How
ever, as x increases, the number of terms needed to yield the same accuracy in
creases rapidly. At x - 4, eight terms are needed to give an accuracy of three 
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significant figures, whereas the first term of the asymptotic expansion (1.81) 
yields the same accuracy. As x increases further, an accurate result is obtained 
with far less labor by using the asymptotic divergent series (1.81). In fact, for 
very large values of x, the convergent series is useless from the computational 
point of view, owing to the finite word length of modern computers. Thus, any 
attempt to evaluate Jo(x) for large x using the convergent series (1.80) fails 
beyond a given value of x; to be sure, this value depends on the skill of the 
programmer. 

1.8. Elementary Operations on Asymptotic Expansions 

To determine approximate solutions of algebraic, differential, and integral 
equations and to evaluate integrals, we assume expansions, substitute them 
into the equations, and perform on them elementary operations such as addi
tion, subtraction, multiplication, exponentiation, integration, and differentia
tion. Some of these operations are not justified. When they are not justified, 
they lead to singularities and nonuniformities. For example, 

1/2 
\fxT~e = \fx 1̂ + - j -\fx 

2 x 2 

is not justified when e/x = 0(1) because the second term becomes the order of 
the first term and the third term becomes the order of the first term. Thus, the 
error committed by truncating the series after N terms is not 0(eN), the order 
of the first neglected term if x = 0(e), and we speak of a nonuniform expansion. 
Similarly, 

— - — = 1 - ex + e 2 x 2 - e 3 x 3 + • • • (1.85) 
1 + ex ' 

is not justified when ex = 0(1), because the error committed in truncating the 
series after N terms is not 0 ( e A f ) , the order of the first neglected term. Con
sequently, one needs always to check whether the obtained expansions are 
uniform or not/This is the major objective of perturbation methods. 

I 
Exercises 

1.1. For smalJ e, determine three terms in the expansions of 

(a) ( 1 - | a 2 e + f i a V ) -

(b) cos (y/T^lt) 
(c) V1 - J e + 2e2 

file:///fxT~e


(d) sin (1 + e- e2) 
1.2. Expand each of the following expressions for small e and keep three terms: 

(a) V T | e ^ - i e 4 / 

(b) ( 1 + e c o s / T 1 

(c) (1 +eco! + e 2 w 2 ) ~ 2 

(d) sin (s + ecoj s + e CJ2S) 

(e) sin" 

1 + 2 e - e" 
( f ) In 

^ 1 + 2e 
1.3. Let N = Ho + efit + e2/*2 in = | [ 1 - V 1 " 3/i(l - , expand for small 
e, and keep three terms. 
1.4. For small e, determine the order of the functions 

s inh l -J l n ( l + s i n e ) ln(2 + sine) e
l n ( 1 ~ € ^ 

1.5. Determine the order of the following expressions as e -* 0: 

y/e(l - e) 47r 2 e 1000e1 / 2 ln(l+e) 1 - cos e ,3/2 

1 + cos e 1 - cos e 

l + 2 e ' 

,tan e In 1 + 
ln(l + 2e) 

e ( l - 2e) J 
In 

In 

1 +• 
1 - 2e 

-cosh (l/e) 
J" 

1 

1.6. Determine the order of the following expressions as e 0 

- i c Ve~ 
l n ( l + 5 e ) sin 1 . = - — 

V l + f sin c 

/ 1> In \ sinh — 
\ € 

1.7. Determine the order of the following as e -*• 0: 

/i\ /a e3/4 r 
ln(cote) sinh — cothl—) In : 

\e/ \e/ 1 - cose L 

1 2 
\ - cose 

In II + In 
1 + 2e1 

1.8. Arrange the fol lowing in descending order for small e: 
A/2 I nane " 1 ) 1 e " J l ne -

e e 2 l n e _ 1 

elne In e" 

1.9. Arrange the following in descending order for small e: 
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(•7) " 0 

l n ( l + e ) cot(e) tanh 

e ln(e ) exp I — J sinh | — 

.3/4 

1 

1.11. Arrange the following terms in descending order for small e: 
2 

-i/e 

1 

= 1/2 

- 0 

or sma 

e 1 ^ 

-3/2 1 ,3/2 1 
= 1/2 e e In 

.0.0001 .-0.0001 

e 

e e _ e o . o o o i l n ^ 5 i / « 5 

1.12. Arrange the following terms in descending order for small e: 

e , f - e M e - M , e3/2 e x p ( i - \ l n ( l j 

H e ) ] " . e ' n ( e ) ^ ( t ) e 

where p = 1 0 " 1 0 0 and^= 1 0 1 0 0 . 
1.13. Arrange the following in descending order for small e: 

1 - cos e 

In In 

l n ( l + e ) sech _ 1 (e ) 
1 + cos e 

V e ( l - e) e - ^ G / O 

In 

In 
1 + 2 e 

1 + 
1 - 2e 

In 1 + 
ln( l + 2e) :l/2 

e ( l - 2e)J 1 - cose 

1.14. Which of the following expansions is nonuniformly valid and what are its 
regions of nonuniformity? 

(a) V2 / = | x 3 / 2 + e , | 

1 + 7 
(b) r> = e cos x + I e 2 r 

1 - 27' 
3_ ,3 
16 

27 4 + 772 + 2 

(1 - 2 7 2 ) ( 1 " 37 2 ) 
cos 3x 

+ 0 ( e 4 ) 

e x p ^ - j j ln(jj e ^ 1 0 0 cot(e) sinh ^ 

1.10. Arrange the following in descending order for small e: 

sin(e) 
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(c) o = \/A:2 - 1 

2 „ 2 _ _ 3 3 

+ 0 ( e 3 ) 

(d) /= 1 - ex + e ' x ' - e J x J + 0<e H ) 
ea3 

(e) u = a cos(I + ~ ea2)t + cos 3(1 + I ea2)r + 0 ( e 2 ) 

ea 
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( f ) u =a cosr + (| cos 3f - 3r sin f) + # ( e 2 ) 
8 

2e 3e 
(g) c = 1 + + 

(h) 

r - 1 ( t - l ) 2 

1 

+ 0 ( e 3 ) 

=cos X j \ A O - x) dx 
VxHl-x) L J 0 

as A 0 0 

( i ) /= sin x + e cos x - 4- e 2 sin x - i e 3 cos x + 0 ( e 4 ) 



CHAPTER 2 

A Igebraic Equations 

In this chapter, we discuss approximate solutions of algebraic equations that 
depend on a small parameter. The solution is represented as an asymptotic 
expansion in terms of the small parameter. Such expansions are called param
eter perturbations. To describe the method, we begin by applying it to quadratic 
equations because their exact solutions are easily obtained for comparison. We 
consider cubic equations in Section 2.2, higher-order equations in Section 2.3, 
and transcendental equations in Section 2.4. 

2.1. Quadratic Equations 

We begin with quadratic equations because their exact solutions are available 
for comparison. We consider three examples. 

EXAMPLE 1 

As a first example, we determine the roots of 

x2 - ( 3 + 2 e ) x + 2 + e = 0 (2.1) 

for small e. When e = 0, (2.1) reduces to 

x2 - 3x + 2 = (;c- 2){x- 1) = 0 (2.2) 

whose roots are x = 1 and 2. Equation (2.1) is called the perturbed equation, 
whereas (2.2) is called the unperturbed or reduced equation. When e is small 
but finite, we expect the roots to deviate slightly from 1 and 2. The first step in 
determining an approximate solution is to assume the form of the expansion. 
In this case, we assume that the roots have expansions in the form 

x ~x0 + e*i + e2x2 + • * • (2.3) 

where the ellipses stand for all terms with powers of e " for which n > 3. In most 
applications, one calculates only one or two terms in the expansion because the 
algebra needed to calculate the higher-order terms is so involved. The algebra is 
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relegated to a digital computer when possible. We should note that in many 
physical problems, especially nonlinear problems, determination of higher-order 
terms is not straightforward even if the routine algebra is relegated to a digital 
computer. In this book, we are concerned only with the first few terms in the 
expansion. Usually, one refers to the first term x 0 as the zeroth-order term, the 
second term exj as the first-order term, and the third term e 2 x 2 as the second-
order term. In other words, the order of a term is decided by the gauge function 
rather than its numerical order. 

The second step involves substituting the assumed expansion ( 2 3 ) into the 
governing equation (2.1). The result is 

( x 0 + ex, + e 2 x 2 + • • ) 2 - (3 + 2e) ( x 0 + ex, + e 2 x 2 + • • •) + 2 + e = 0 (2.4) 

The third step involves carrying out elementary operations such as addition, 
subtraction, multiplication, exponentiation, and so on, and then, collecting 
coefficients of like powers of e. Using the binomial theorem to expand the first 
term, we have 

( x 0 + ex, + e 2 x 2 + • • ) 2 =x2> + 2x 0 ( ex , + e 2 x 2 + • • • ) + (exx + e 2 x 2 + • • - ) 2 

= xl + 2 ex 0 * i + 2 e 2 x 0 x 2 + e 2 x 2 + 2e3x1x2 + e 4 x 2 + • 

= xl + 2 e x 0 x j + e 2 ( 2 x 0 x 2 + x ? ) + • • • (2.5) 

where only terms up to 0{e2) have been retained, consistent with the assumed 
expansion (2.3). Had we sought an expansion of 0(e"), where n > 3, we would 
have included terms up to 0 ( e " ) in (2.5). Multiplying the factors in the second 
term in (2.4), we have 

(3 + 2e) ( x 0 + exx + e 2 x 2 + •••) = 3x 0 + 3ex! + 3 e 2 x 2 + 2ex0 + 2e 2 x x 

+ 2 e 3 x 2 = 3 x 0 +e (3x , + 2 x 0 ) + e 2 ( 3 x 2 + 2Xi)+--

(2.6) 

Here again, only terms up to 0(e2) have been retained, consistent with the 
assumed expansion. Substituting (2.5) and (2.6) into (2.4), we have 

x\ + 2ex 0 x , + e 2 ( 2 x 0 x 2 + x 2 ) - 3x 0 - e(3x, + 2 x 0 ) 

- e 2 ( 3x 2 + 2 x , ) + 2 + e + - - = 0 

Collecting coefficients of like powers of e yields 

(xl - 3x 0 + 2) + e ( 2x 0 x , - 3x, - 2x 0 + 1) + e 2 ( 2 x 0 x 2 

+ x ] - 3x2 - 2 x , ) + • • • = 0 (2.7) 

The fourth step involves equating the coefficient of each power of e to zero. 
To justify this step, we let e -+ 0 in (2.7). The result is 
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xl - 3x0 + 2 = 0 (2.8) 

and (2.7) becomes 

c(2x0xt 3x, 2x0 » I ) t22(2xQx2 + x\ - 3x2 •• 2xt) + • • • • 0 

Dividing by e gives 

2x0xi - 3x, - 2xQ + 1 + e(2jc 0 x 2
 + * i " 3 * 2 " 2 x , ) + • • • = 0 (2.9) 

which, upon letting e -»• 0, yields 

2x0Xi - 3xt - 2x0 + 1 = 0 (2.10) 

Then, (2.9) becomes 

e(2x0x2 + x\ - 3x2 - 2xx ) + ••• = 0 

which, when divided by e, yields 

2xQx2 + x\ - 3x2 - 2xt + 0(e) = 0 (2.11) 

Letting e -* 0 in (2.11), we have 

2xQx2+x\-3x2-2xx =0 (2.12) 

We note that (2.8), (2.10), and (2.12) can be obtained directly from (2.7) by 
equating the coefficient of each power of e to zero. 

The fifth step involves solving the simplified equations (2.8), (2.10), and 
(2.12) in succession. Equation (2.8) is the same as the reduced equation (2.2), 
and hence, its solutions are 

x0 = 1,2 

With x0 known, we can solve (2.10) for xx. We note that (2.10) is linear i n x x . 
In most problems, all perturbation equations are linear, except perhaps the first. 
Whenxo - 1, (2.10) becomes 

xx + 1 = 0 or xx = -1 

With x0 and xx known, we can solve (2.12) for x2. When x0 = 1, xt = -1 and 
(2.12) becomes 

x2 - 3=0 or x2 = 3 

When x0 = 2, (2.10) becomes 

Xi - 3 = 0 or xx = 3 

Then, (2.12) becomes 

x2 + 3 = 0 or x2 = -3 

The last step involves substituting the values obtained for x0,xx ,andx 2 into 
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the assumed expansion (2.3). When x 0 = 1.x, = -1 and x 2 - 3; therefore, it 
follows from (2.3) that 

x = l - e + 3e2 + • • • (2.13) 

Whenx0 = 2,x, =3 and x 2 - ~3; therefore, it follows from (2.3) that 

x = 2 + 3 e - 3 e 2 + • • • (2.14) 

Equations (2.13) and (2.14) provide approximations for the two roots of (2.1). 
To determine how good these approximations are, we compare them with the 
exact solution 

x = i [3 + 2 e + V ( 3 + 2 e ) 2 - 4(2 + e)J 

or 

x = i [3 + 2e + V l + 8e + 4 e 2 j (2.15) 

Using the binomial theorem, we have 

(i)Jr i ) 
2! 

(1 +8e + 4 e 2 ) 1 / 2 =1 + | ( 8 e + 4 e 2 ) + - ^ r
a ^ ( 8 e + 4 e 2 ) 2 + 

= 1 + 4e + 2 e 2 - 4 (64e 2 + • • •) = 1 + 4e - 6e 2 + • • • 8 

which, when substituted into (2A5), gives 

_ J \ (3 + 2e + 1 + 4e - 6e 2 + • • •) 
X I A (3 + 2e - 1 - 4e + 6e2 + • • •) 

or 

2 + 3e - 3e2 + • • • 
x = «{ (2.16) 

in agreement with (2.13) and (2.14). 

EXAMPLE 2 
As a second example, we consider an equation whose roots may involve frac

tional rather than integral powers of e. Specifically, we consider 

( x - l ) ( x - r ) = -ex (2.17) 

When e = 0, (2.17) reduces to 

( x - l ) ( x - r ) = 0 

whose roots are x = 1 and t . This suggests that we seek approximations to the 
roots of (2.17) in the form 
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x = x 0 + ex, + e 2 x 2 + •• • (2.18) 

Here again, we are stopping at 0(e2). Hence, the resulting expansion is called 
a second-order expansion. Substituting (2.18) into (2.17), we have 

( x 0 - 1 + ex, + e 2 x 2 + • •) (x0 - T + ex, + e 2 x 2 + • • •) 

= - e (x 0 + ex, + e 2 x 2 + • • •) 

which, upon expanding, yields 

( x 0 - l ) ( x 0 - r ) + e ( x 0 - l)xt + e 2 ( x 0 - l ) x 2 + e (x 0 - r ) x , 

+ e2x} + e 2 ( x 0 - r ) x 2 + ex 0 + e 2 x , + • • • = 0 

Collecting coefficients of like powers of e gives 

( x 0 - l ) ( x 0 - r ) + e [ ( 2x 0 - 1 - t ) x , + x 0 1 

+ e 2 [ ( 2 x 0 - 1 - r ) x 2 +x? + x , ] + • • • = 0 (2.19) 

As before, only terms up to 0(e2) have been retained, consistent with the 
assumed expansion. Equating the coefficient of each power of e in (2.19) to 
zero, we obtain 

( x 0 - l ) ( x o - r ) = 0 (2.20) 

( 2x 0 - 1 - r ) x , + x 0 = 0 (2.21) 

( 2x 0 - 1 - t ) x 2 + x 2 + x , = 0 (2.22) 

which can be solved in succession for x 0 , and x 2 . 
The solutions of (2.20) are 

x 0 = 1 or t 

When x 0 = 1, (2.21) becomes 

( l - r J x ^ ^ O so that x , = — 
1 - T 

Then, (2.22) becomes 

(1 - r ) x 2 = - t
 1

 x 2 + 1 

(1 - r ) 2 1 - 7 (1 - r ) 2 

so that 

* 2 = 
(1 - rf 

Hence, one of the roots is 



Whenxo = T , (2.21) becomes 

r 
( T - I ) * , + T = 0 sothat Xi =-

1 - T 

Then, (2.22) becomes 

, n = L _ T 

V- L>x* - X . T ( 1 . r ) 2 " ( 1 _ T ) 2 

so that 

Hence, the second root is 

x 

Equations (2.23) and (2.24) show that the above expansions break down 
(i.e., are nonuniform) as T -*• 1 because the "corrections" to the solution of the 
reduced equation tend to °°. In fact, r need not be exactly equal to 1 for the 
above expansions to break down. The expansions break down whenever the 
first-order term, second-order term, and so on are the order of the zeroth-order 
term, because the corrections to the zeroth-order term will not be small, con
trary to the assumption underlying the method. To determine the order of T - 1 
for which the above expansions break down (i.e., region of nonuniformity),'we 
determine the conditions under which successive terms are the same order. It 
follows from (2.23) that the zeroth- and first-order terms are the same order 
when 

€T 
T + + 

1 - r (1 - TY 
(2.24) 

= 0 ( 1 ) or l - r = 0 ( e ) 
1 - r 

whereas the first- and second-order terms are the same order when 

^2 

1 - r 
O 

(1 - rf 
or (1 - r ) 2 = 0 ( e ) 

or 

1 - T = 0(€1'2) 

Since for small e, e1/2 is bigger than e, the region of nonuniformity is 1 - T = 

0 ( e ^ 2 ) , the larger of the above two regions. 
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or 

X2-X~TX + T + €X=*Q 

x2 - (1 + r - e)x + T = 0 

whose roots are given by 

x = \ [1 + T- e+V ( l + T- e)2 - 4r] 

or 

X = L [I + r - e + VO " T)2 - 2e(l + r) + e 2 ] (2.25) 

Next, we expand (2.25) for small e and compare the result with (2.23) and 
(2.24). Using the binomial theorem, we have 

11/2 
[ ( l - r ) 2 - 2 e ( l + r ) + e 2 ] 1 / 2 = ( l - r ) 1 -

2e ( l + r ) - e7 

(1 - r ) 2 

1 2 e ( l + r ) - e 2 a)(-\) [2e( l + r ) - e 2 ] 2 

= ( 1 " T ) ^ " 2 ( 1 - r ) 2 

1 4 € 2 ( 1 + T ) 2 

( 1 - T ) 2 2 ( 1 - r ) 2 8 ( 1 - r ) 4 

(2.26) 

where again only terms up to 0(e2) have been retained, consistent with the 
assumed expansion. Putting (2.26) into (2.25) with the positive sign gives one 
of the roots as 

* = ± e ( l + r ) 2e 2 r 
1 + T - e + l - T - - ^ - j + 

1 - r (1 - ry 
(2.27) 

or 

x = l 
1 - r ( 1 - r ) 3 

in agreement with (2.23). Putting (2.26) into (2.25) with the negative sign gives 
the second root as 

r 
= I 

2 
1 + r - e - 1 + T + 

«0 + r ) 2 e 2 r 
L + + . . . 

- r ( 1 - r ) 3 

As discussed in Chapter 1, nonuniformities in the expansions arise whenever 
an elementary operation used in obtaining the expansions is not justified. To 
determine this operation, we investigate the exact solution. To this end, we re-
w.iie (2.17) as 
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or 

er e2T 

* = T + - + - + • • (2.28) 
1 - T (1 - T) 

in agreement with (2.24). 
In arriving at (2.27) and (2.28) from the exact solution, we performed only 

the exponentiation operation in (2.26) and the addition and subtraction opera
tions in (2.27) and (2.28). The subtraction and addition operations are usually 
justified, and hence, the exponentiation operation is the suspect operation. In 
approximating 

( 1 - u ) 1 ' 2 by 1- {u + ^—^-u2 

we made the implicit assumption that \u | < 1. In the present example, 

2 e ( l + r ) - e 2 

whose magnitude is small compared with 1 only when T is away from 1. In fact, 
at T = 1, u = °°, irrespective of how small e is as long as it is different from zero. 
It follows from (2.29) that the binomial expansion is not justified when u -
0 ( 1 ) or (1 - T ) 2 = 0 ( e ) or 1 - T = 0 ( e 1 / 2 ) . 

Therefore, to obtain a uniform expansion when 1 - T = 0 ( e 1 / 2 ) , we need to 
modify the above procedure by taking this fact into account. This can be for
malized by introducing a so-called detuning parameter o defined by 

l - r = e 1 / 2 a (2.30) 

where o is independent of e. Putting (2.30) in (2.17) gives 

(x- l ) ( x - 1 + e 1 / 2 a ) = -ex (2.31) 

When e = 0, (2.31) reduces to 

(x- l ) 2 = 0 

which yields the double root x = 1. This fact and the presence of e 1 / 2 in (2.31) 
suggest trying an expansion in the form 

x = 1 + e 1 / 2 x , + • • • (2.32) 

We stop at 0 ( e ^ 2 ) because obtaining the higher-order terms is straightforward. 
-Su&ttitulingJtlieJk^^ into (2.31) gives 

si0%±>sM*4jMA e1,2o + •••) = - e ( l + e 1 / 2 * , + • • •) 

or 



ex\ + ectxi + e + • • • = 0 

Hence, 

x\ + oxx + 1 = 0 

whose roots are 

x{ = \ (- a + \Jo2 - 4 ) 

Therefore, the roots of (2.17) in this case are given by 

x = l - | e ' / 2 ( a + V / ^ 7 J ) + 

x = 1 - \ e 1 / 2 ( a - sfo^A) + 

which are regular at o = 0 or r = 1. 

(2.33) 

EXAMPLE 3 
As a third example, we consider 

e x 2 + x + l = 0 (234 ) 

in which the small parameter multiplies the highest power of JC. Since (234 ) is a 
quadratic equation, it has two roots. However, as e -> 0, (2.34) reduces to 

x + l = 0 (235 ) 

which is of first order, and hence, it has only one solution. Thus,* is discontin
uous at e = 0. Such perturbation problems are called singular perturbation 
problems. 

Equation (235 ) suggests trying the expansion 

x =x0 + ex i + - • • (2.36) 

for one of the roots. To minimize the algebra, we determine only first-order ex
pansions in the remainder of this chapter. Putting (2.36) in (2.34), we have 

e (x 0 + ex | + • • )7 + x0 + ex, + • • • + 1 = 0 

or 

e(xo + 2€x0xx) + x0 + exx + 1 + • • • = 0 

or 

x0 + 1 + rfx-, + xl) + • • • =» 0 

Equating coefficients of like powers of e gives 

x0 + 1 = 0 
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which can be solved successively for x0 and xx. Hence,x0 - -1 and xx = -x\ = 
-1 so that one of the roots is 

x = - ! - € + • • • (2.37) 

Thus, as expected, the above procedure yielded only one root. To devise a 
modified procedure for determining the other root, we investigate the exact 
solution, that is, 

* = ̂ ( - l + V T ^ e " ) ( 238 ) 
2e 

Using the binomial theorem, we have 

(1) (-1) 
= l-2e+ 2 /

2 t
 2 / ( - 4 e ) 2 + • • • 

= l - 2 e - 2 e 2 + --- ( 239 ) 

Substituting (239 ) into (238 ) with the positive sign yields one of the roots as 

- 1 + 1 - 2 e - 2 e 2 + ••• t 

x = s _ i . e + . . . (2.40) 
2e 

in agreement with (237 ) . Substituting (2.39) into (238 ) with the negative sign 
yields the other root as 

- 1 - l + 2 e + 2e 2 + --- 1 
x = = - - + 1 + e + • • • (2.41) 

2e e 

Therefore, both of the roots go in powers of e but one starts with e - 1 . Hence, 
it is not surprising that the assumed form (236 ) of the expansion failed to pro
duce the root (2.41). Consequently, one cannot determine the second root by a 
perturbation technique unless its form is known. However, for a general problem 
whose exact solution is not known, the form of the roots is not known a priori 
and must be determined as part of the solution. In those cases, we recognize 
that, if the order of the equation is not to be reduced, the other roots tend to 0 0 

as e -*• 0, and hence, assume that the leading term has the form 

x = 4 + ' - - ( 2 - 4 2 ) e 

where v must be greater than zero and needs to be determined in the course of 
analysis. Substituting (2 .42 ) into ( 2 .34 ) , wc have 

c1 " \ V + e"*> + 1 + ' * ' * 0 (2.43) 

Next, we extract the dominant terms in (2.43). To recover the second root, we 
must keep the first term e1 ~2Vy2; otherwise, we will end up where we started. 
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Since v > 0, the second term is much bigger than 1. Hence, the dominant part of 
(2.43) is 

e ' - V + e ' V - O (2.44) 

which demands the powers of e be the same. That is, 

1 - 2v = -v or v = 1 

for y to be different from zero. Then, it follows from (2.44) that 

y=0 or -1 

The first value y = 0 corresponds to the first root (237 ) since in the region 
0(e~l) it appears to be zero, whereas y = -\ corresponds to the second root. 
Thus, it follows from (2.42) that to the first approximation the second root 
is given by 

1 
x = —+ • • 

e 

in agreement with (2.41). To determine more terms in the expansion of the 
second root, we try 

x = - j + x 0 + ••• (2.45) 

Substituting (2.45) into (234 ) yields 

/ 1 \ 2 1 
ef- j + x9 + • • •) - j + x0 + • • •+ 1 = 0 

or 

/1 2 jc 0 , \ 1 
E / _ _ - ^ . + XL + . . .J - - + X o + i + . . . = o 

or 

- 2 x 0 + x 0
 + 1 + 0 ( 0 = 0 

Hence,x0 = 1 and (2.45) becomes 

x=-1 + i + . . . 
e 

in agreement with (2.41). 
Alternatively, once v has been determined, we view (2.42) as a transformation 

from x toy. Then, putting x ~y\e in (234 ) yields 

y2+y + e = Q (2.46) 
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which can be solved to determine both roots because e does not multiply the 
highest order. 

2.2. Cubic E q u a t i o n s 

In this section, we also consider three examples. The roots of the first example 
can be expressed in powers of the small parameter e, the roots of the second 
example need to be expressed in fractional powers of e, and some of the roots 
of the third start with inverse powers of e. 

E X A M P L E 1 

We consider the equation 

x 3 - (6 + e)x2 + (11 +2e)x- 6 + e 2 = 0 (2.47) 

We try an expansion in powers of e as 

x - ' x 0 + ex, + • • • (2.48) 

Substituting (2.48) into (2.47) gives 

( x 0 + ex, + • • - ) 3 - (6 + e) ( x 0 + ex, + • • ) 2 + (11 + 2e) ( x 0 + ex! + - • •) 

- 6 + e 2 = 0 

or 

x% +3ex 2
) x i - (6 + e ) ( x§ + 2 e x 0 X i ) + ( l l + 2e) ( x 0 + ex , ) - 6 + e 2 + • • • = 0 

or 

Xq + 3exoX, - 6xq - 12ex0x, - ex2, + 1 l x 0 + I l e x , + 2ex 0 - 6 + • • • = 0 

Collecting coefficients of equal powers of e gives 

x% - 6x1 + H*o ~ 6 + e(3x^x, - 12x 0 x, + l l x , - x2, + 2 x 0 ) + • • • = 0 

where terms up to 0 ( e ) have been retained, consistent with the order of the 
assumed expansion. Equating each of the coefficients of e° and e to zero yields 

x3, - 6x1 + H*o " 6 = 0 (2.49) 

3x2
)x, - 12x 0 x , + 1 lx , - x% + 2x 0 = 0 (2.50) 

Equation (2.49) can be rewritten in factored form as 

( x 0 - l ) ( x 0 - 2 ) ( x 0 - 3) = 0 

Hence, 

x 0 = 1 or 2 or 3 



It follows from ( 2 . 5 0 ) that 

(3x1 ~ 12x0 + l l ) x , = x2> - 2xQ 

whose solution is 

xl - 2x0 , . . n 

X , = — : (2-51) 
1 3 X 2 , - 12*0 + 11 . 

When x 0 = 1, it follows from (2.51) that X , = - ± . Hence, one of the roots is 

given by 

x = l - i e + ---

When x 0 = 2, it follows from (2.51) that X , = 0. Hence, a second root is given by 

x = 2 + (0)e + • • • 

When x 0 = 3, it follows from (2.51) that x , = |. Hence, the third root is given 
by 

x =3 + | e + • • • 

Thus, in this case all roots go in powers of e. 

EXAMPLE 2 

As a second example, we consider 

x 3 - (4 + e )x 2 + (5 - 2e)x - 2 + e 2 = 0 (2.52) 

Again, let us try an expansion in the form 

x = x 0 + exi + • • • (2.53) 

Substituting (2.53) into (2.52) gives 

( x 0 + « ! + • • - ) 3 - (4 + e) ( x 0 + ex, + • • ) 2 + (5 - 2e) ( x 0 + ex, + • - •) 

- 2 + e 2 = 0 

or 

*o - 4xo + 5x 0 - 2 + e(3xo.v, - 8x 0 x , - Xq + 5x, - 2 x 0 ) + • • • = 0 

Equating coefficients of like powers of e, we have 

x3, - 4x1 + 5 x 0 - 2 = 0 (2.54) 

3x2x, - 8x 0 * i - xl + 5x, 2 x 0 =0 (2.55) 

To solve (2.54), we factor its left-hand side and obtain 
( x 0 - l ) 2 ( x 0 - 2 ) = 0 

which yields 



xQ - 1, 1, and 2 

To solve (2.55) for x , , we first rewrite it as 

(3x1 - 8x 0 + 5 ) X , = X2> + 2 x 0 

Hence, 

_ *o + 2x 0 

3XQ - 8x 0 + 5 

When x0 = 2, it follows from (2.56) that x , = 8. Hence, one of the roots is given 
by 

x = 2 + 8e + --- (2.57) 

When x 0 ~ 1, it follows from (2.56) that xr = °°, indicating that the assumed 
form of the expansion is wrong. 

To determine a valid expansion when x 0 = 1, we change the form of the ex
pansion (2.53) to the following: 

x = 1 + e"x, + e 2 l x 2 + • • • v>0 (2.58) 

and determine v in the course of analysis. Putting (2.58) in (2.52), we have 

(1 + e"x, + e2vx2 + • • ) 3 - (4 + e ) (1 + e"x, + e 2 " x 2 + • • ) 2 

+ (5 - 2e) (1 + ev
Xi + e 2 " x 2 + • • •) " 2 + • • • = 0 

or 

1 + 3evx, + 3e2vx2 + 3e2vx\ - 4 - Sevxt - 8e 2 " x 2 - 4 e 2 P x 2 

- e - 2 e 1 + " x 1 + 5+5ev
Xl +5e2vx2 - 2 e - 2el + " x , - 2 + • • • = 0 

Hence, 

- x ? e 2 P - 3 e + - - - = 0 (2.59) 

In order that the dominant terms in (2.59) balance each other, 2 v must be equal 
to 1 or v - \, and x , = ±y/Ji. Hence, it follows from (2.58) that the second and 
third roots are given by 

x = 1 ± e 1 / 2 VJi + - •• 

This example illustrates the fact that difficulties arise whenever the assumed 
form of the expansion is not correct. But once the form is corrected, a con
sistent solution is obtained. This is typical of perturbation problems. 

EXAMPLE 3 
As a third example, we consider 

e x 3 + x + 2 + e = 0 (2.60) 
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in which the small parameter multiplies the highest power of x. As e 0, (2.60) 
reduces to 

X + 2 = 0 

and hence, we assume that one of the roots has the form 

X = JC 0 + ex, + • • • (2.61) 

Substituting (2.61) into (2.60) yields 

€(>o + EX i + • • -)3 +X0+€Xi + • • • + 2 + e = 0 

or 

x 0 + 2 + e(x, +XL + 1 )+ • • • = 0 

Equating coefficients of like powers of e, we have 

X 0 + 2 = 0 

x , +Xo + 1 = 0 

Hence, x 0 = - 2 and x , = 7. Therefore, one of the roots is given by 

x = -2 + 7e + • • • 

To determine the other roots, we note that they tend to 0 0 as e -* 0 because e 
multiplies the highest order. Hence, to determine expansions for these roots, we 
assume that their leading terms have the form 

. x = 2 L + - " „ > 0 (2.62) 

€ 

Substituting (2.62) into (2.60), we have 

€ , - 3 V + e " l > + 2 + - - - = 0 (2.63) 

In order that the dominant parts in (2.63) balance each other, 

1 - 3v = -v or v ~ \ 

/ 3 + ^ = 0 
Hence, 

y=0 i -i 

The casey = 0 corresponds to the first root, and hence, it is discarded here. 
To determine an improved approximation to the second and third roots, we 

use the above information and seek expansions in the form 

x = ^ + x 0 + - - (2.64) 
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wherey - i or - i . Substituting (2.64) into (2.60) gives 

y
3 3y2x0 , \ , y 

*o - ~ 2 . , " 1 

e 3 ' 2 ' e ' / " e 1 ' 2 

or 

e " 1 / 2 ( ^ 3 + >>) + 3 y 2 x 0 + x 0 + 2 + • • • = 0 

Equating coefficients of like powers of e, we have 

y* +y = 0 

3.y2x0 + x 0 + 2 = 0 

Hence, as before,.y = ±i and 

2_ 

3y2 + 1 

Therefore, the second and third roots are given by 

2.3. Higher-Order Equations 

In this section, we consider higher-order equations and concentrate on the case 
in which the small parameter multiplies the highest power of the unknown. 
Specifically, we consider 

ex" =xm +am.1xm~1 +am.2xm-2 + • • • + < * , * + a 0 (2.65) 

where the as are independent of e and x, n and m are integers, and n >m. As 
e -> 0, (2.65) reduces to 

xm +am.lxm~1 +am-2xm-2 + --- + a i x + a0 = 0 (2.66) 

which has the roots as, where s = 1 ,2 ,3 , . . . ,m. To improve upon these roots, 
we let 

x =xQ + ex i + -— (2.67) 

in (2.65) and obtain 

e(x0+ex1 • ) " =(x0 + ex1 + • • • ) m + <*m - i ( *o +ex , + - - - ) m - » 

+ a m _ 2 ( x 0 + e x , + - -Y 7 7 " 2 + ( x 0 + e x , + •••) + *<> 

or 
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+am„lxZ1-1 + ^ - 2 * o 1 " 2 + ••• + <*,x0 +a0 +e[mx^~1 

+ (m - l)am.lX^-2 + (#n - 2)am-2x?~3 + • • • + * , ] * , - ex£ + 0 ( e 2 ) = O 

Equating coefficients of like powers of e, we have 

x ^ + < z m _ I x 0
n - 1 + f l m - 2 x 0

? ' - 2 + - - - + J , X 0 + * 0 = 0 (2.68) 

[mx?-1 +(m- l)am.lX^-2 + (m - 2)am.2x^'3 + • • • + a,} x\ = x£ 

(2.69) 

Equation (2.68) is the same as (2.66), and hence, has the roots x 0 = a$, where 
s = 1 , 2 , 3 , . . . , w. Then, it follows from (2.69) that 

'x, ^ a J K ' 1 + ( « - Otfrn-ittr^ + ' - ' + fli]"1 

Hence, 

x = a , + € a ; [ m < - 1 + (m - O ^ ^ a f " 2 + • • • + * , J " 1 + ••• (2.70) 

We should note that (2.70) breaks down whenever the term inside the brackets 
vanishes. This corresponds to a multiple root of (2.68). In this case, the expan
sion goes in fractional powers of e and one needs to follow the procedure used 
in Example 2 of the preceding section. 

To determine the remaining n - m roots, we note that they tend to °° as 
€ •+ 0 because e multiplies the highest power of x. Then, we assume expansions 
for them in the form 

x = 4 + * o + - - ^ > 0 (2.71) 

Substituting (2.71) into (2.65), we have 

yn ny»-lx0 \ _ym mym-lx0 am-,ym-x 

env €^n~1)v I emv e ^ " 1 * " €(m-i)v 

m - 2 , ( m - l)am.iy
m~2x0 

(2.72) 

Extracting the dominant terms, we have 

e 0 -nv) n _ e-mVym 

Hence. 

(\~ nv)--mv so that u = (2.73) 

n - m 

y" =ym (2.74) 

Equation (2.74) has 0 as a root with a multiplicity of m and 
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yn~m = I = e
2 i > w 

where r = 1 , 2 , 3 , . . . , ( « - m). Hence, 

j = c o , c o 2 , . . . , co* co = exp( -^ f ? r ) (2-75) 

where k = n - m. We discard the root j> = 0 because it corresponds to the first s 
roots. 

Using (2.73) and (2.74), we rewrite (2.72) as 

nyn-1x0ev = mym-1x0e'/ + a m . l y m - 1 + • • • 

Hence, equating the coefficients of ev on both sides yields 

Hence, 

nyn~lx0 =mym-lxQ+am-lym~x 

FT \ r ^ — 1 RT N 
_ am-\ y _ am-l _ am-l ,~ 7^x 

0 ~nyn~x -my"1'1 nyn'm -m"n-m 'K } 

Therefore, the last n - m roots are given by 

x =
 ( ± +

 aJlLLL + . . . r = l , 2 , . . . , / i - m (2.77) 
e « - m 

where i> and co are defined by (2.73) and (2.75). 

2.4. Transcendental Equations 

We consider the roots of Bessel's function Jo(x) for large x , that is, we con
sider the roots of the transcendental equation 

/<>(*) = 0 

when x is large. In Chapter 13, we determine an expansion for J0(x) a s * °°. It 
follows from (13.141) that 

J0(x) ~ y — [u cos (x - $ n) + v sin (x - \ 7r)] as x-*°° \2.7S) 
Y TIX 

where u and v are defined in (13.129) and (13.130) as 

l 2 - 32 l 2 • 3 2 • 5 2 • 7 2 

file:///2.7S
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Setting J0(x) = 0 in (2.78), we have 

u cos (x - 17r) = - v sin (x - £ n) 

c o t ( x - \n) = - - (2.81) 
u 

It follows from (2.79) and (2.80) that 

1 75 \ / 9 

u \8x 1024x3 / V 128x2 
+ 

- l 

1 75 \ I 9 
1 + 7 T ^ r + Bx 1024JC3 / \ 128* 

JL 3 3 

Sx~ 5\2x3 + " 
(2.82) 

where use has been made of the binomial theorem. Putting (2.82) into (2.81), 
we find that the large roots of Jo(x) are governed by 

c r t f r . ^ . - . U - g - . . . . (2.83) 

Since x is large, the right-hand side of (2.83) can be neglected for the first 
approximation. The result is 

- cot (x - i 7r) = 0 

Hence, 

x- ±7r = (n + ± )7r or x = (/z + f)7r (2.84) 

where n is an integer, which must be large in order that x be large. As shown 
below, even n = 0 yields an incredibly accurate result. 

To determine an improved approximation to x, we put 

x - £ ?r= (n + £ ) * + 5 or x = (w + f ) ?r + 5 (2.85) 

in (2.83) and obtain 

1 33 

cot [ ( « + ? > + 5] =-— - _ j + r — ~ + (2-86) 
l v 2 J J 2tt (4« + 3) + 85 [27r(4w + 3) + 8 5 ] 3 v ' 

Using trigonometric identities, we rewrite the left-hand side as 
cot (n + | ) IT cot 6 - 1 -1 

cot [ ( « + A)7r + 6] = 
cot (n + |) rr + cot 5 cot 5 

= - t a n 5 = - ( 5 + | 5 3 + - ) 
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Hence, (2.86) becomes 

1 33 
5 + i 6 3 = ; z^. — + • • • (2.87) 

3 2t7(4« + 3) + 85 [2tt(4m + 3) + 8 5 ] 3 v ' 

which is an algebraic equation for 5. 
We take [27r(4n + 3 ) ] _ 1 = e as a small parameter and rewrite (2.87) as 

g + 1 § 3 = + . . . 

3 ! +8eS ( l + 8 e 5 ) 3 

or 

6 + $ 6 3 = e ( l - 8e5 ) - 33e3 + • • • (2.88) 

Next, we try the following expansion for 5: 

S = e S , + e 2 5 2 + e 3 5 3 + • (2.89) 

Substituting (2.89) into (2.88), we have 

e5, + e 2 6 2 + e 3 5 3 + -- + | e 3 8 3 = e - 8e 3 5 , - 33e3 + ••• 

where only terms up to 0 ( e 3 ) have been retained. Equating coefficients of like 
powers of e, we obtain 

8 , = 1 5 2 = 0 5 3 + ^ 5 3 = - 85 ! - 33 

Hence, 5 3 = - 411. Therefore, 

x = (n + |) 7T + e - 41 J e 3 + • • • 

or 

* = (n + f > + Y^TJ) ' 6 ir 3 (4« + 3 ) 3 * " ' ( 2 ' 9 ° > 

Table 2-1 compares the approximate solution (2.90) with the tabulated roots 
of J0(x). The agreement is incredible even for the lowest root, which is ap
proximately 2.40482, a no.t very large number. The disagreement in the lowest 
mode is in the fourth significant figure and the error is approximately 0.07%. 
The accuracy improves as the root number increases. For the fourth root, the 
perturbation expansion agrees with the tabulated value to seven significant 
figures. 

T A B L E 2-1 . Comparison of Approximate and Tabulated Roots of Bessel's Function 
of Order Zero 

Root No. 1 2 - 3 4 5 6 7 
Perturbation 2.40308 5.52004 8.65372 11.79153 14.93092 18.07106 21.21164 
Tabulated 2.40482 5.52008 8.65373 11.79153 14.93092 18.07106 21.21164 
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Exercises 

2.1. For small e, determine two terms in the expansion of each root of the 
following equations: 

(a) x 3 - (2 + e)x2 - (1 - e)x + 2 + 3e = 0 
(b) x 3 - (3 + e)x - 2 + e = 0 
(c) x 3 + ( 3 - 2e )x 2 + (3 + e)x + 1 - 2e = 0 

i/Cd) x 4 + (2 - 3e)x3 - (2 - e)x - 1 + 4e = 0 
(e) x 4 + (4 - e)x3 + (6 + 2e )x 2 + (4 + e)x + 1 - e 2 = 0 

2.2. For small e, determine two terms in the expansion of each root of the 
following equations: 

(a) e (u 3 + u2) + 4u2 - 3u - 1 = 0 
(b) eu 3 + u - 2 = 0 
(c) eu3 + (u - 2 ) 2 = 0 
(d) u2 - u - 2 + \ e(u3 + 2u + 3) = 0 
(e) eu 4 + u3 - 2u2 - u + 2 = 0 
( f ) eu 4 - u3 + 3u - 2 = 0 
(g) e « 4 - u 2 + 3u - 2 = 0 
(h) eu4 + u 2 - 3u + 2 = 0 
( i ) eu 4 - u 2 +2u - 1 = 0 
( j ) cu 4 + u 2 - 2u + 1 = 0 
(k) e ( « 4 + u 3 ) - w2 + 3u - 2 = 0 

.... (1) e (u s + u4 - 2 u 3 ) + 2 u 2 - 3u + 1 = 0 
(m) e(us + u 4 - 2 u 3 ) - 4u2 + 4 u - 1 = 0 
(n) e V - eu 4 - u 3 + 2u2 +u - 2 = 0 

2.3. For small e, determine two-term expansions for the solutions of 

e 3e2 

(a) s j T = 0 
3*2 10J4 

e 21e2 

2.4. Determine two-term expansions for the large roots of 

(a) x tan x = 1 
(b) x cot x = 1 

2.5. Differentiate (2.78) and use (2.79) and (2.80) to show that the large roots 
of J'0(x) = 0 are approximately given by 

i 3 

tan (x - 7 i r )= + • • • 
4 Bx 

Then, show that 



2n(4n + 1) 

Compare this result with those tabulated for the first seven roots. 

2.6. The asymptotic expansion of Bessel's function of second kind of order 
zero is 

/2~ r 
' o ( * ) " " | / — si Y nx 

1 
sin (x - ^ 7r) cos (x - j rr) 

* Sx * 

Show that the roots of Y0(x) = 0 are given by 

1 

as x -*•00 

x = {n + |);r + 
2n(4n + 1) 

Compare this result with those tabulated for the first seven roots. 

2.7. Using the asymptotic expansion of ^oC*) in the preceding exercise, show 
that the roots of YQ(X) = 0 are given by 

x = (« + j)LT-
2n(4n + 3) 

Compare this result with those tabulated for the first seven roots. 

2.8. The asymptotic expansion of Jv(x) is 

J Ax) cos (x - \\m- 1 rr) -
4v2 - 1 

8jc 
sin (X - y VN - 4 IT) as X - * «> 

(a) Show that the roots of Jv(x) = 0 are given by 

4v2 - 1 
x = (n + § + \v)v~ 

2n(4n + 3 + 2v) 

(b) Show that the roots of j'„(x) = 0 are given by 

3 + 4v2 

2n(4n + 1 + 2v) 
x**(n + i + \v)n-

(c) Compare these results with those obtained in Exercise 2.5 and Section 2.4 
for v = 0. 

(d) Compare these results with those tabulated for the first seven roots when 
v= 1. 

2.9. The asymptotic expansion of Yu(x) is 

8x 
Yv{x) 

/ I f . . 4i/' - 1 . , 
y — sin (jc - ^ vn - 5 rr) + { * ~ * - 1 COS (X ~ I t>77 - I 7T) 
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(a ) Show that the roots of Yv(x) = 0 are given by 

4v2 - 1 

2n(4n + 1 + 2v) 

Compare this result with that for Y0 in Exercise 2.6. 
( b ) Show that the roots of Y'v(x) = 0 are given by 

x = (n + % + ±v)ir-
3 + 4u2 

27r(4n + 3 + 2i>) 

Compare this result with that for Y0 in Exercise 2.7. 
( c ) Compare these results with those tabulated for the first seven roots when 

v= 1. 



CHAPTER 3 

Integrals 

There are many differential and difference equations whose solutions cannot be 
expressed in terms of elementary functions but can be expressed in the form of 
integrals. Among the many methods that can be used to represent the solutions 
of differential equations as integrals, we mention the Laplace and Fourier 
transforms. Before we discuss methods of determining approximations of inte
grals, we show how to represent the solution of a simple differential equation as 
an integral. Other examples are given in Section 13.5 and Exercises 13.17 and 
13.18. 

We consider the general solution of the following first-order linear ordinary-
differential equation: 

= - (3.1) 
X 

Multiplying (3.1) by the integrating factor exp (x ) gives 

y'ex+yex^j (3.2) 

which can be rewritten as 

Integrating both sides yields 

d ex 

T ( y e x ) = - (3.3) 
dx x 

f * eT 

yex = —dr + c (3.4) 
Jx T 

where T is a dummy variable of integration, x0 is an arbitrary limit of integra
tion, and c is a constant. Uy(l)=a, then 

ae = I —dr + c 
J v r 

51 
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or 

— dr 

Substituting for c in (3.4) gives 

ye 

= ae + 

Hence, 

y =ae + e — dr (3.5) 

In this chapter, we discuss a number of methods for determining approxima
tions to integrals such as the one in (3.5). These methods include expansions of 
the integrands, integration by parts, Laplace's method, the method of stationary 
phase, and the method of steepest descent. These methods are described by 
applying them to specific examples. 

3.1. Expansion of Integrands 

In this section, we consider four examples. 

EXAMPLE 1 
As a first example, we consider the value of the integral 

o 
(3.6) 

for small e. Expanding the integrand in a Taylor series gives 

(3.7) 



Using the ratio test in (3.7) yields 

nth term _ (- l)n+1(ex2)2n-i(2n - 3)? 

n™ (n - l)th term " (In - 1 ) ! ( - \ ) " ( e x 2 ) 2 " - 2 

= hm -— — = 0 
n+~(2n- \)(2n- 2) 

Hence, the series (3.7) converges for all values of ex2. Since |x| < I and e is 
small, the remainder term in (3.7) is 0 ( e 7 ) for all values of x. Substituting (3.7) 
into (3.6) and integrating term by term, we obtain 

( - l ) N + V 
~ (2n-l)\ JQ ~ (2/i- I ) ! (4« - l ) 

= l e - -L e3 +_ i_ e 5 + 0 / 7) / 3 8 ) 

3 42 1320 v ' v J 

EXAMPLE 2 

As a second example, we consider the complete elliptic integral of the first 
kind 

•0/2>» dd 
J0 \J\- m sm2 0 

for small m. Using the binomial theorem, we write 

(1 - w sin2 BY1'2 = 1 + \ m sin2 0 + 2 ' j 2 (-m sin2 0 ) 2 

3! 4! 

X (-m sin2 0 ) 4 + 0 ( m s ) (3.10) 

Using the ratio test yields 

nth term 
lim 

n+co (n - l)th term 

M) H ) H ) 
= lim 

2«_-_3 
2 y (,» 2)!( w sin7 0 ) " * 

"" ^ 2 J(M- l ) ! ( -msin 2 e)" - 2 

(2n - 3)m sm2 6 . , „ 
= hm — = m sin 0 

n » « 2 ( « - 1) 
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Hence, expansion (3.10) converges for all values of 6 such that m sin2 6 < 1. 
Since sin2 0 < 1 and m is small, the remainder in (3.10) is 0(ms) for all values 
of e. 

Substituting (3.10) into (3.9) and integrating term by term, we obtain 

/-0/2)n r(l/2)jr r(l/2)n 
I(m) = / dd + i m I sin2 6 dd + f m2 \ sin4 6 dd 

r0/2 )w 3 5 r ( i/2 )w 
sin6 6 dd + — m 4 sin8 0 d0 + 0 ( m s ) 

Jn 128 A 

5 

(3.11) 

We note that 

•(l/2)n 

i " " ^ n " e d e ' - ( ^ ( 3 1 2 ) 

Hence, (3.9) becomes 

/(m) = ^ 
, 1 9 2 25 , 1225 . . .1 _ 

Table 3-1 shows the ratio IJIe as a function of m, where Ia is the approximate 
expression (3.13) and Ie is the exact value of / as tabulated on page 608 of 
Abramowitz and Stegun (1964). As m -> 0, IJIe -* 1. When m <0 .5 , the error 
incurred in representing Je by Ia is less than 0.28%. For m = 0.7, the error in
curred in representing Ie by Ia is less than 2%. Thus,/fl is a good approximation 
of Ie for small values of m. 

EXAMPLE 3 
As a third example, we consider the integral 

/ ( x )= f f3/A e-'dt (3.14) 

for small x. We expand the exponential in a Taylor series as 

TABLE 3-1. Variation of IJJe with m 

m 0 0.2 0.4 0.5 0.6 0.7 0.8 
/„//„ 1 1.0000 0.99917 0.99720 0.99216 0.98043 0.95382 
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e - t = £ , - t + I T2 _ l ,3 + _L , 4 + 0 ( F S ) ( 3 1 5 ) 

Using the ratio test for the series in (3 A 5), we have 

nth term ( -1 ) " / " ( / i - l ) ! ,. f rt 

h m 7 771 = hm , ' , N „ _ . . . . = lim - - = 0 (3.16) 
n*°°(n- l)th term « ! ( - 1 ) " 1 /" 1 ,i -

for all f. Hence, the series (3.15) converges for all values of t. Moreover, since t 
is small, the order of error in (3.15) is uniform. 

Substituting (3.15) into (3.14) and integrating term by term, we have 

R . O " ! -A) n=0 + 

= 4 * 1 ' 4 - f x 5 ' 4 + f x 9 ' 4 - £ x 1 3 / 4 + O f * 1 7 ' 4 ) (3.17) 

EXAMPLE 4 
As a last example, we consider the error integral 

/(*)= [ e~t% dt (3.18) 

for small x . Expanding the integrand in a Taylor series, we have 

e" = 2 . ^ - V " ( 3 ' 1 9 ) 

which converges for all values of t as shown in the preceding example. However, 
no finite number of terms can represent exp (-t2) for all / as shown in Figure 
5-2. On the other hand, 

e-t> = y 1 _ L L L _ + 0 ( t 2 N ) (3.20) 
n = 0 « ! 

for small t. Hence, we represent (3.18) in the following alternate form: 

/ ( * ) = f e~t% dt- f e " ' ' (3.21) 
Jo Jo 

To evaluate the first integral, we note that 

f oo /»oo 

e'"1 du= e'v7 dv (3.22) 
» •'o 
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Hence, 

/ 2 = (J> e~ul di)j ĵf e^'dvj*^ e-(u*+vl)dudv (3.23) 

We change the integration variables from the Cartesian coordinates u and v to 
the polar coordinates r and 6. Thus, 

dudv = rdrdd (3.24) 

and the limit of integration on 6 goes from 0 to \ it and that on r goes from 0 to 
°°. Hence, (3.23) becomes 

= i*(-K') 
so that 

/ , = I e'xi dx = {yfn (3.25) 
•'o 

Substituting (3.19) into the second integral in (3.21), integrating term by 
term, and using (3.25), we obtain 

n » o n ] Jo M =o \ 2 n + l ) 

= ^\ft-x + ±x* - ±xs + ± X1 + 0(x9) (3.26) 

3.2. Integration by Parts 

We explain this approach by applying it to five examples. The last example 
brings out a shortcoming of this approach and leads into Laplace's method and 
the method of stationary phase. 

EXAMPLE 1 
As a first example, we consider the incomplete factorial function defined by 

£9 I(x)= -:Tdt (3.27) 



for large x. 

The method of integration by parts is based on the identity 

d(uv) = udv + vdu (3.28) 

or 

udv = d(uv)- vdu (3.29) 

If u and v are functions of t, then integrating both sides of (3.29) from t - t x to 

t = t2 gives 

J udv=uv - I vdu (3.30) 

To apply (3.30), we need to express the quantity under the integral sign in 
(3.27) as u dv, that is, 

-r-dt=udv (3.31) 
r 

Usually, u and dv are chosen such that the resulting expression for dv is inte
grate. Moreover, they are chosen such that the successive terms in the expan
sion of I(x) decrease in order. To illustrate these points, we try two choices. 
First, we let 

Hence, 

u = e~r dv = % (3.32) 

du=-e-*dt y = - y (3.33) 

Substituting (3.32) and (3.33) into (3.30) yields 

- r - c ? / = I udv = I — d t 

t Jr t L J v t 

or 

[ -sdt=--);-7dt ( 3 3 4 ) 

To continue the process, we put 

dt 
u = e - t dv = — (3.35) . t 
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Hence, 

du=-e~tdt u = lnf (3.36) 

T h e n , 

Since 

f —dt = f u dv = e~* In 11 + f £~ r ln fd f (3.37) 

lim e~f In / = lim — 7 - = lim —j = 0 
f*oo f+OO Q f • oo f£ 

according to l'Hospital's rule, (3.37) becomes 

J ^ - ^ = - e " x l n x + j e~f In tdt (3.38) 

Substituting (3.38) into (334 ) yields 

JOO _f _x /»oo 

= L _ + e - * l n x _ J e - ' i n r j , ( 3 . 3 9 ) 

We note that the second term on the right-hand side of (3.39) is much bigger 
than the first term as x -*• 00. Therefore, the above choices (3.32) and (335 ) do 
not yield an asymptotic expansion. 

Second, we let 

Hence, 

u = ~ i dv-e^dt (3.40) 

2 
du=--^dt v = -e~t (3.41) 

Substituting (3.40) and (3.41) into (330 ) yields 

1 7*-*-1 -21 7- dt 
X 

or 

f S*-?-2f S* (342) 
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from which 

Hence, 

3 
du=-jdt u = - e " ' (3144) 

1 -?dt*~? " 3 J Tdt 

or 

C00 e~l e~x C" e~< 

[^dt-^-z[-7dt (3-45) 

Substituting (3.45) into (3.42) yields 

f ~ e~f e~x 2e'x f ~ e " f 

I -7d'^- — +3li -?d< (3-46> 
Continuing the process, we obtain 

1 > - e~x 2\e~x 3le~x 4\e~x (- l)n-ln\e~x 

+ ••• + - — _ , . 

( - 1 ) " («+!)! J -~jdt (3.47) 

Since tn+2 > x n + 2 w h e n j c < f < < « , 

1 < 1 

and 

Then, (3.47) can be rewritten as 

To continue the process further, we let 

H = ~ dv^e'xdt (3.43) 
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/(x) = dt = 7 ~ 7 - 7 dt 
tf 

or 

To continue the process, we let 

u • (x + t)'2 du = (3.53) 

Hence, 

du = -2(x + r )~ 3 u = - e" r (3.54) 

Substituting (3.53) and (3.54) into (3.30) yields 

and hence, it is an asymptotic expansion. We note that the series in (3.48) di
verges because 

wthterm (rl)m~1mlxm -m 
lim —— = lim . . „ _, 7~~ = lim — = -°° 

, n * « (w - l)thterm m ^ ~ j c m + 1 ( - 1)™ 2 ( m - i ) ! , n . ~ x 

However, for a fixed JV, the error can be made arbitrarily small by increasing x. 

EXAMPLE 2 
As a second example, we consider 

/ « - f 7 7 ; * ( 3 - 4 9 > 
Jo 

for large positive x. As in the preceding example, the choice 

u = e~r rfv = (x + t)~l dt 

does not lead to an asymptotic expansion. Thus, we let 

u = ( x + f ) _ 1 dv = e~'dt (3.50) 

Hence, 

du = - (x + f ) - 2 tff w = - e" r (3.51) 

Substituting (3.50) and (3.51) into (3.30) yields 
, - r 



Jo ( ^ ^ = "0cT77 0 " 2 J 0 (>T7?̂  = R R - 2 j o 

(3.55) 

Then, (3.52) becomes 

Continuing the process, we have 

1 1 2 ! 3! ( - ! ) " - ' ( « - 1)! 
/(x) = 2 " + T " ~ T + ' " + n 

X X Xr X X 

r —ii— 
} X c * + o f l M 

+ (-l)nn\ I Z7—J^dt (3.57) 

Since x and f are positive, 

1 < 1 

(x + t ) n + 1 x"+1 

and hence, 

Therefore, 

f ; — r r r « f < t t J . , e ldt = - — r r 

" ( - 1 ) " - ' ( W - 1 ) ! / 1 \ 
/(x) = 2- —n + °\^NT\) < 3 - 5 8 ) 

and hence, it is an asymptotic expansion. We note that the series in (3.58) di
verges because 

mth term (~\)m-l(m - \)\xm'1 _ - (m - 1) = 

( m - l ) t h t e r m x m ( - l ) m " 2 ( m - 2 ) ! " m ™ x 

However, for a fixed JV, the remainder can be made arbitrarily small by increas
ing x. 

EXAMPLE 3 
As a tliird example, we consider the Laplace integral 

/ ( x )= f e-xtf(t)dt (3.59) 



62 INTEGRALS 

for large positive x when f(t) is analytic (i.e., all its derivatives exist in the inter
val of interest) and the integral exists. Such integrals occur in the solution of 
differential equations by using the Laplace transform. We let 

u «/(/) dv = e'xt dt 

so that 

,-xt 
du=f'(t)dt v = 

x 

(3.60) 

(3.61) 

Had we chosen u = exp (-xt) and dv = f(t)dt, we would have found the result
ing expression not to be an asymptotic expansion. Substituting (3.60) and (3.61) 
into (330) yields 

r e-xtf(t)dt = f(t) if' 
x Jn 

+ - I e-xtf'(t)dt 
o -'o 

or 

J(x) 
x X 1 

e-xtf'(t)dt 

Continuing the process, we put 

u =/'(/) dv=e~xtdt 

so that 

e~xt 

du=f"(t)dt v = 
x 

Substituting (3.63) and (3.64) into (3.30) and then into (3.62) gives 

/ (0 ) e'« 
X X" 

or 

/ (0 ) . /'(D) . 1 

X X" X 

Continuing the process, we obtain 

f 

V ' V V.2 „ 3 „ 4 v.n + 1 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

x x 
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+ -

Thus, 

f e-xtffr + i ) { 0 d t ( 3 . 6 6 ) 

-'o 

J(x) - X "7,771- + ° TjvTT ( 3 - 6 7 ) 
n=0 "* \ / 

and hence, it is an asymptotic expansion. 

EXAMPLE 4 
As a fourth example, we consider the Fourier integral 

1(a) = eiatf(t)dt (3.68) 

for large positive o when f(t) is an analytic function of t. It is assumed that the 
function f(t) decays properly at <*> so that the integral (3.68) exists. Such 
integrals occur in the solutions of differential equations by using the Fourier 
transform. To integrate (3.68) by parts, we put 

u=f(t) dv = e*atdt (3.69) 

so that 

Jat 
du=f'(t)dt v= (3.70) 

ia 
Substituting (3.69) and (3.70) into (330 ) gives 

J„ o o i a t . « , r°° 

eiatf(t) dt = —/(/) - - eiatf'(t) dt 
n ia n iaJn or 

ia J0 

1(a) = - - | etatf'(t) dt (3.71) 
ia ia 

Continuing the process as in the preceding example, we obtain 

N f(n)(0) I 1 \ 

which is an asymptotic expansion. 
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EXAMPLE 5 
As a last example, we consider the generalized Laplace integral 

/(*) = J e^MfiOdt b>a (3.73) 

for large positive x when h(t) and / ( f ) are differentiable functions of t. To inte
grate (3.73) by parts, we need to express the quantity under the integral sign in 
(3.73) as u dv. In this case, we cannot put 

dv = exh® dt u =/(r ) (3.74) 

because the last expression is not integrable in simple terms. To obtain an 
integrable expression, we modify (3.74) and put 

u = 
/(') 
h'(t) 

dv=exh^h'(t)dt 

so that 

du = 
fit) 

dt 

Substituting (3.75) and (3.76) into (3.30) yields 

(3.75) 

(3.76) 

f exh^f(t)dt = 

or 

xh\t) 

exh(b)fjb) g**fr>/(g) 

xh'(b) " xh 

xl [h'(i\ dt 

'(a) x 1 h'(t) 
dt 

Continuing the process, we find that 

-**<M/(&) 
I(X) 

xh\b) xh (a) 
as 

(3.77) 

(3.78) 

In writing (3.77) and (3.78), we assumed that fit) and hit) are differentiable and 
that h'it) ^ 0 in [a, b]. If h it) is stationary (i.e., h' = 0) at any point in [a, b], 
the above process breaks down because the integral in (3.77) does not exist. 
If /i'(f)=£0, (3.78) shows that only the immediate neighborhoods of the end 
points contribute to the integral. Moreover, if /i(a) # /i(fr), only the immediate 
neighborhood of the end point with the larger value of h contributes to the 
asymptotic development of the integral. This suggests that only the immediate 
neighborhood of the point t = c in [a, b] corresponding to the maximum value 
of hit) contributes to the asymptotic expansion of the integral, irrespective of 



whether t = c is an interior or an end point. This is the central idea of Laplace's 
method. If the maximum value of h(i) occurs at the boundary, say t =a, and if 
it is nonstationary, then one can replace the upper limit in (3.73) with c pro
vided that h(t) has no stationary values in [a, c], integrate the result by parts, 
and obtain the asymptotic development of I(x). If the maximum value of h(t) 
corresponds to a stationary point, the method of integration by parts fails. In 
the next section, we discuss Laplace's method for determining the asymptotic 
expansions of integrals such as (3.73) without restricting/(r) to be differentiable 
and the maximum value of h(f) to occur at a nonstationary point. 

3.3. Laplace's Method 

In this section, we consider integrals of the general form 

for real h(t) and large positive x. We assume that the integral in (3.79) exists 
(i.e., it has a finite value). As discussed in the preceding section, according to 
Laplace, only the immediate neighborhood of the point corresponding to the 
maximum value of h(t) in [a, b] contributes to the asymptotic expansion of 
I(x). Laplace devised a general method for determining the asymptotic develop
ment of integrals having the form (3.79). In this section, we explain Laplace's 
method using six examples. 

EXAMPLE 1 
As a first example, we consider the special case 

To determine an asymptotic development for I(x) for large x, we expand (1 + 
t)~l in powers of /, integrate the resulting expansion term by term,and replace 
the upper limit by °°. This is justified below. 

It follows from the binomial theorem that 

'a 
(3.79) 

(3.80) 

oo 

o+o*1 = n (3.81) 

Using the ratio test, we have 

nth term (-l)ntn 

= Urn (t) = -t 
( - l ) " » r 
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Hence, the series (3.81) converges only for |f| < 1. Consequently, substituting 
(3.81) into (3.80) and integrating the result term by term from r = 0 t o r = 1 0 
appears to be unjustified because (3.81) is valid only for \t\ < 1. To circumvent 
this difficulty, we break the interval of integration into the two intervals [0 ,6 ] 
and 15,10], where 6 is a small positive number. Thus, we write (3.80) as 

Jr- e~xt f 1 0 e~xt 

- dt + - dt (3.82) 

Next, we show that the second integral in (3.82) is exponentially small for 
large positive x. To this end, we note that 1 > (1 + f ) " 1 for positive values of /. 
Hence, 

Jf1 0 e~XT f 1 0 P~xt 

f—rf/< j e~xtdt* 
•x 

10 j 

= - - ( e - l o x - e - ° x ) 

As x -*• <«, exp (- lQx) tends to zero much faster than any power of x~l. More
over, for finite values of 5 and as x -*• °°, exp (-5x) tends to zero much faster 
than any power of x~l. Therefore, the second integral in (3.82) tends exponen
tially to zero and 

f 5 e~xt 

I(x) = J Y+~t^ + e x P o n e n t ^ y s m a ^ t e r m s (3.83) 

as x °°. Thus, only the immediate neighborhood of t - 0 contributes to the 
asymptotic development of (3.80). 

Substituting (3.81) into (3.83) and integrating term by term, we obtain 

/ ( * ) = f e~xtlY. (-l)ntn\ £ ( - 1 ) " f tne'xtdt (3.84) 

-'o \«=0 / ,1*0 •'o 

To evaluate the last integral in (3.84), we introduce the transformation r = xt so 
that dt-dr\x. Hence, 

f tne'xtdt-~ fX T"e-TdT (3.85) 

A repeated integration by parts of the last integral in (3.85) yields 

»6 1 /*»6;c 

jf tne-xtdt=-J7T Jf Tne-TdT = - ~ [ r n +nTn-1 +n(n- 1)T"-2 

+ • • • + \n\r2 +nW + nl]e~T 

&x 
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or 

n-2 i 6 , 8n nbn~l n ( / 7 - l ) 5 ' 
+ + 

X X 0 

w!62 n!6 n\ 

2x' 
(3.86) 

Since exp (-Sx) tends to zero as x -* 0 0 much faster than any power of x - 1 , the 
term multiplying exp (-5.x) in (3.86) is much smaller than any power of x " 1 . 
Hence, 

r t"e-xtdt=~£-r + EST (3.87) 

where EST stands for exponentially small terms. This result is independent of 
the value of 6 including °°. In fact, 

f „ v , nl 

This completes justification of the above stated procedure. 
Substituting (3.87) into (3.84) gives 

/ « « 2 - M M - (3-88) 

where the exponentially small terms have been omitted. Using the ratio test, we 
have 

nth term , (-\)nn\xn , -n 
lim - — = hm . 777 = hm — = - 0 0 

n+°° (n- l )thterm x M + 1 (- l)n *(/?- 1)! x 

Hence, the series (3.88) diverges. Therefore, the equality sign cannot be used and 
it must be replaced with an asymptotic sign. Thus, we write 

I(x)~Z-~J^T as x - 0 0 (3.89) 
n=0 x 

This result could have been obtained by integration by parts. 
The procedure stated above is usually referred to as Watson's lemma, which 

gives the full asymptotic development of integrals of the form 

/ (x )= I f(t)e~xtdt (3.90) 
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or 

/C*)~ £ amr(m(l)/xml3 (3.92) 
m = 1 

EXAMPLE 2 
In the preceding example, h{t)--t has its maximum at the lower limit (i.e., 

t = 0 ) . Since h'(0) = - 1 , this maximum is not a relative maximum. As a second 
example, we consider a case in which h(t) has a relative maximum at t = 0. 
Specifically, we consider 

J0 1 + f 

In this case, the method of integration by parts would fail as discussed in 
Example 5 of the preceding section. For large positive x, only the immediate 
neighborhood of t = 0 contributes to the asymptotic development of I(x) 
because h(t) = - f2 has its maximum there. Using Watson's lemma, we determine 
an asymptotic expansion for I(x) by substituting the expansion (3.81) of 
(1 + t)~l into (3.93), integrating the result term by term, and replacing the 
upper limit by °°. The result is 

/ ( * ) ~ £ ( - 1 ) " J tne~xtl dt (3.94) 
n»0 •'0 

We denote the integrals in (3.94) by 

where/(f) is continuous on the interval [0, b], has the asymptotic expansion 

/ ( f ) ~ £ ant"10-1 as f ^ O (3.91a) 

with /3 being positive for the integral to converge, and if b = +°° 

f(t)<Keat (3.91b) 

with K and a being positive numbers independent of t. Then, Watson's lemma 
states that the full asymptotic expansion of I(x) is obtained by substituting 
(3.91a) into (3.90), integrating the result term by term, and replacing the 
upper limit with °°, that is, 



Jo 
dt (3.95) 

We start with 

/ 0 = f e~xr dt (3.96) 
Jo 

If we let t = T, then rfr- dr/s/x and (3.96) becomes 

/ o = - F = I e'*2 dr (3.97) 
V * J 0 

Using (3.25), we rewrite (3.97) as 

70 = f e - x t l d t = ^ = (3.98) 

Differentiating (3.98) with respect to x, we have 

- J t*e~XT dt = -
^o 

Hence, 

4*3/2 

/a-J[ (3.99) 

Differentiating (3.99) with respect to x, we have 

Hence, 

f 

'o 

Continuing the process, we find that 

d 

f °° % r~ 

/2„ = i\M - i r ^T ( * - 1 / 2 ) (3-101) 

To determine the /„ for odd n, we start with 
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1 r r 1 
2x J0 2x 

Differentiating (3.103) with respect to x yields 

o 2x 

• r 
t3e~xf2 dt = - A r 

2x2 

Hence, 

1 
t'e'M dt = -

'o 0 

Differentiating (3.104) with respect to x yields 

•I 
Hence, 

V̂ F 1 VlT 1 3 \ / 7 T 1 

(3.103) 

/ 3 = J r V ^ r f r = 2 - ^ (3.104) 

/5 = tse-*' dt = -j (3.105) 
'0 x 

Continuing the process, we find that 

dm 

W i ^ C - i r ^ C * - 1 ) (3-106) 

Using (3.101) and (3.106), we rewrite (3.94) as 

2 * 1 ' 2 2 * + 4A : 3/ 2 " 2x 2 + 8 J C S ' 2 " x3 + " " ( 3 , 1 0 7 ) 

THE GAMMA FUNCTION 

Alternatively, we can express (3.95) in terms of the gamma function defined 
by 

/, = f te~xt' dt (3.102) 

We let xt2 - T so that 2xr dt "dr. Hence, 
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• oo oo 

r(z) = - T 2 " 1 e~T I + (z-l) Tz~2e-TdT 'o ^0 

(3.113) 

The integral in (3.113) exists and equals P(z - 1) only for z > 1. Then, (3.112) 
follows from (3.113). If T ( z ) is tabulated for 0 < z < 1 only, the recursion for
mula (3.112) can be used to determine T ( z ) for z > 1. For example, 

T(5.3) =4.3r (4.3) = ( 4 3 ) ( 3 3 ) r ( 3 . 3 ) = ( 4 3 ) ( 3 3 ) ( 2 3 ) r ( 2 . 3 ) 

= ( 4 . 3 ) ( 3 3 ) ( 2 3 ) ( 1 3 ) r ( l 3 ) = ( 4 3 ) ( 3 3 ) ( 2 3 ) ( 1 3 ) ( 3 ) r ( 3 ) 

The integral defining the gamma function can be integrated analytically when
ever z is a positive integer or a multiple of |. When z is a positive integer, the 
recursion formula (3.112) gives 

T ( z ) = I TZ~L e-rdT (3.108) 

where z must be greater than zero; otherwise, the integral does not exist. To 
relate (3.95) to the gamma function, we introduce the transformation 

T — xt7 dr = 2xtdt (3.109) 

so that (3.95) becomes 

J n = i x - ( n + l)l2 T ( n - l ) / 2 e - r r f T = l x K n + l ) / 2 r ^ l l j (3.110) 

Substituting (3.110) into (3.94) yields 

n = 0 ^ x 

To show that (3.111) is the same as (3.107), we use the following recursion 
formula: 

r ( z ) = ( z - l ) F ( z - 1) (3.112) 

for z > 1. To prove this formula, we use the method of integration by parts and 
let 

U=Tz~1 dv-e~Tdr 

so that 

du=(z~ 1)Tz'2 dr y = - e " T 

Then, it follows from (3.30) that 



r ( z ) = (2 - i ) r ( z - 1 ) = (z - i ) ( z - 2)r(z - 2) 

= (z - l ) ( z - 2)(z - 3) • • ( 3 ) ( 2 ) ( l ) r ( l ) (3.114) 

Putting z = 1 in (3.108), we have 

/• oo t oo 

T ( l ) = e'TdT = ~e-T = 1 (3.115) 
•'o 0 

Hence, it follows from (3.114) that 

T ( z ) = ( z - 1)! (3.116) 

if z is a positive integer. Therefore, if n = 2m + 1 where m is a positive integer 

/* + l\ /2m + l + A r , / 

Then, it follows from (3.110) that 

in agreement with (3.106). 
If z = m + \ where w is a positive integer, it follows from (3.112) that 

r(m + i ) « (m - i ) r (w - |)* (m- | ) r ( « - f) 
= (m - I ) (m - F ) (m - § ) • ••• ( F ) ( F ) 0 r (±) (3.118) 

Putting z = ^ in (3.108), we have 

T ( i ) = f T~ll2e-rdT (3.119) 

With the substitution r =>>2, (3.119) becomes 

T 0 = 2 J e~y* dy (3.120) 

But the integral in (3.120) is \ \fn according to (3.25); hence 

r ( i ) = x/F (3.121) 

Therefore, (3.118) becomes 

Vim + i ) = (m - I ) (m - | ) (m - F ) • • • ( § ) ( § ) ( J ) (3.122) 

if m is a positive integer. Consequently, if n - 2m where m is an integer, 



= (m - i) (m - f) (m - f) • • • (f) (|) (I) V ? (3.123) 

Then, it follows from (3.110) that 

hm = i (m - i ) (m - | ) (m - | ) • • • (|) ( f ) ( J ) n /TT J f " l ' - 0/ * ) l (3.124) 

in agreement with (3.101). 

EXAMPLE 3 
As a third example, we consider the following integral, which is slightly more 

general than the preceding example: 

I(x)= f f(t)exh^dt b>a (3.125) 

where 

h'(a) = 0 h"(a)<0 (3.126) 

f(t)=M-a)K as t + a (3.127) 

and f0 is a constant. The conditions (3.126) imply that h(t) has a relative maxi
mum at t = a. We assume that this maximum is also an absolute maximum as 
shown in Figure 3-1. The constant X must be greater than -1 for the integral 
(3.125) to exist. Only the immediate neighborhood of t = a contributes to the 
asymptotic development of /(x) because h(t) has its maximum there. Thus, the 
upper limit can be replaced with a + h, where 8 is a small positive number. The 
result is 

Figure 3-1. A function with a relative and absolute maximum at t = a. 
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I(x) Jpa + 6 

a 

f(t)exh^ dt (3.128) 

To determine the principal part of / (x ) , we expand h(t) in a Taylor series 
about t =a, that is, 

h(t) = h(a) + h'(a)(t - a) + \ h"(a) (t - a)2 + • • • 

or 

h(t) = h(a)+{-h"(a)(t-a)2 + 2 it y*j \i **} • (3.129) 

because h\d) = 0. Substituting (3.127) and (3.129) into (3.128), we have 

J(x)~f0exh(a) f (t - a)x
 eW^h"(a)(t-ay d t ( 3 1 3 0 ) 

Since h"(a) < 0, 6 can be replaced with 0 0 because only the immediate neighbor
hood of t = a contributes to the asymptotic development of / (x ) . Thus, we 
rewrite (3.130) as 

/(x) -f0exh(a> f (t - a)x e ? 0 / 2 ) * A » < ' - * ) J
 d t ( 3 1 3 1 ) 

The integral in (3.131) can be expressed in terms of the gamma function. To this 
end, we let 

and obtain 

or 

/ ( x ) ~ -
v ' 2 

7 1 ( ^ + 0 / 2 r°° 

— 4 T T / O * * * w r ^ - ^ e - ' r f r (3.133) 

(3.132) 

f0exh<fl) r(V1) as x - ~ (3.134) 
2 ' 

-x/i"(a) 

according to (3.108). 
To determine the higher-order terms in the development of / (x ) , we need to 

keep the higher-order terms in f(t) and the higher-order terms in h(t). 

EXAMPLE 4 
As a fourth example, we consider the preceding example with h(t) having an 

inflection point at / = a as shown in Figure 3-2. Thus, 
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h(t) 
4 

Figure 3-2. A function with an inflection and absolute maximum at t - a. 

h'(a) = h"(a) = Q and h"'(a)<0 (3.135) 

Since only the immediate neighborhood of t - a contributes to the asymptotic 
development of (3.125) for large JC, the upper limit can be replaced with a + 5, 
where 6 is a small positive number, as in (3.128). 

To determine the principal part of (3.128), we expand h{t) in a Taylor series 
about t =a, that is, 

h(t) = h(a) + h\a) it - a) + ~ « » (r - a)2 +^h"'(a) ( f - <z)3 + • • • 

or 

(3.136) h(t) = h(a)+±h"Xa)(t-a)3 + --

on account of (3.135). Substituting (3.127) and (3.136) into (3.128) and re
placing 5 with <*>, we obtain 

I(x) ~f0exh(a) it - a)K
 e(U6)xh"'(aXt-a)3

 d f (3.137) 

The integral in (3.137) can be expressed in terms of the gamma function. To 
accomplish this, we let 

lxh'"ia)it-a?=T (3.138) 

and obtain 

[-xh"'ia)\ f xh(a) | T(X-2)/3 e-r d r (3.139) 
0 

Hence, 

3 l-xh"'ia)} 

according to (3.108). 

<**0/3 [\+V 

/oe^(«)r(___) as x->oo ( 3 . 1 4 0 ) 
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EXAMPLE 5 
In all the preceding examples. h(t) has its maximum at an end point. Here, we 

consider a case in which h (/) has its maximum at a point inside the interval of 
integration as shown in Figure 3-3. Specifically, we consider 

/(*)= f f(t)exhit)dt b>a (3.141) 

where x is large 

h\c) = 0 h"(c)<0 u<c<b (3.142) 

f(t)~M-c)x as t + c (3.143) 

and X > -1 for the integral to exist. To determine the principal part of I(x) for 
large x, we expand h(t) in a Taylor series as 

h(t) = h(c) + \ h"(c) (t - c ) 2 + • • • (3.144) 

because h'(c) = 0. Then, we have 

/(x) ~f0exh^ f (/ - c)k
 e(U2)xh'\c)(t-cy d t ( 3 1 4 5 ) 

where 8 is a positive number. Since only the immediate neighborhood of t - c 
contributes to /(x ) , 5 can be replaced with °°. The result is 

/(x) ~-f0exh<c> j * (t - c)x
 e(U2)xh"(c)(t-cr d t ( 3 1 4 6 ) 

Using the transformation 

h(t) 

a ;c ', ^ 
b t 

Figure 3-3. A function with an absolute maximum at an interior point. 



-±Xh"(c)(t-c)2 = T 2 (3.147) 

we express (3.146) as 

-2 

xh\c)\ 

(*+D/2 
,xh(c) r V T 1 dr as (3.148) 

If X is an odd integer, the integral in (3.148) vanishes, and one needs to deter
mine the next term in the asymptotic development. If X is an even integer, 

p oo /»oo 

I r V T * dr = 2 J T V 7 ' dr 

Using the transformation T 2 = 6, (3.149) becomes 

J " r V T ' = jT e-e dd = r(^} 
according to (3.108). Hence, (3.148) becomes 

/ ( * ) ~ / o 
[xh"(c)\ 

(X+D/2 /X + l 
exn(c) p f * + 1 as 

(3.149) 

(3.150) 

(3.151) 

EXAMPLE 6 
In all preceding examples, 

f(0~fo(t-c)K X > - 1 (3.152) 

where c is the location of the maximum of h(t). As a last example, we consider a 
case in which f(t) -*• 0 as t -*• c faster than any power of f - c so that it cannot be 
represented as in (3.152). Specifically, we consider 

/(*) 
• r 

e - l / ( f - « ) t f - x < f - « ) » rfr fl<ft (3.153) 

for large positive x. Since /(/) = exp [-(/ - a)'1 ] tends to zero much faster than 
any power of (/ - a), the contribution to the integral from the immediate 
neighborhood of / = a is exponentially small. Consequently, application of Wat
son's lemma directly to (3.153) does not yield its asymptotic development. 

To determine the principal part of the asymptotic development of I(x), we 
cannot separate exp [-(t a)~l ] from exp [ x(t a)2]. Rather, we should com
bine them and rewrite (3.153) as 

/ ( * ) = f eH{x^dt (3.154) 
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where 

') = -('" a)'1 -x(t-aY (3.155) 

Hie stationary values of/J(JC, /) are located where 

fr°-(r^'2xi''a) (3156) 

Solving (3.156) yields 

/=a + (2x)~ 1 / 3 (3.157) 

for the location of the maximum of h(x, t). This location is a function of x, in 
contrast with the preceding examples. Thus, to determine the asymptotic ex
pansion of the integral, we first need to transform the variable of integration so 
that the maximum of the exponent is independent of x. Letting 

t - a = x - 1 , 3 s (3.158) 

we rewrite (3.153) as 

I(X)=^JT \ e " i n ^ * ^ d s (3.159) 

X JQ 

The maximum value of h(s) = -(s2 + s'1) in (3.159) occurs at s = 2 " 1 ' 3 . 
Hence, only the immediate neighborhood of this point contributes to the as
ymptotic expansion of I(x) if b is greater than the location of the maximum of 
/?. Thus, we expand h(s) in a Taylor series about this point and obtain 

h(s) = h(2-1'3) - 3(s - 2 ~ l / 3 ) 2 + • • • (3.160) 

Then, we let 

3 x 1 / 3 ( s - 2 - 1 / 3 ) 2 = r 2 (3.161) 

in (3.159) and replace the upper and lower limits by +°° and respectively. 
The result is 

or 

(3.162) 

on account of (3.25). 
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3.4. The Method of Stationary Phase 

In this section, we consider the generalized Fourier integral 

/<«>-{* /u/l(/) dt b>a (3.163) 

for large positive a when f(t) and h(t) are real and the integral exists. The inte
grand is a complex number expressed in polar form with f(t) and ah(t) being its 
amplitude and argument (phase). If f(t) and h(t) are continuously differen-
tiable, one may be tempted to use the method of integration by parts by letting 

u = 
m 
h\t) 

dv = eiahVh'(t)dt 

so that 

du = /(OT dt 
ia 

Then, it follows from (3.163) that 

f(ty«h(t) 
b j rb r m] 

ioth'(t) a iai h'(t)_ 

Continuing the process further, one can write 

\f(a)eiah^ f(b)eiah^' /(«) = -a h'{b) 

ei«h(t) d t 

+ 0 

(3.164) 

(3.165) 

As in the case of the generalized Laplace integral (Example 5 of Section 3.2), 
the method of integration by parts fails if h'(t) vanishes at any point in the 
interval [a, b]. If h'(t) ^ 0 in [a, b], (3.165) shows that only the immediate 
neighborhoods of the end points contribute to the asymptotic development of 
/ (a ) . The rapid oscillations of exp [iah(t)] tend to cancel the contributions to 
the integral except in the neighborhoods of the end points, as shown in Figure 
3-4. Moreover, both ends contribute to the asymptotic expansion, in contrast 
with the generalized Laplace integral in which only the end with the larger value 
of h contributes to the asymptotic expansion. If h\t) vanishes in the interval 
(i.e., the phase has stationary points), the contribution to the asymptotic expan
sion of the integral arises from the immediate neighborhoods of the end and 
stationary points, with the major contribution arising from the neighborhoods of 
the stationary points, as evident from Figure 3-5. The rapid oscillations of 
exp [iah(t)\ shown in Figure 3-5 tend to cancel contributions to the integral 
except in the neighborhoods of the end and stationary points. Figure 3-5 shows 
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(L+VF )COS 50t 

Figure 3-4. A function with rapid oscillations. 

clearly that there is less cancellation from the neighborhood of a stationary 
point than from the neighborhood of an end point. Hence, the leading terms to the 
asymptotic expansion of Fourier integrals arise from the neighborhoods of 
stationary points. In the absence of stationary points, the method of integration 
by parts yields a good approximation to the integral. As in (3.165), the principal 
contribution is 0(a~l). In the presence of stationary points, Stokes developed 
the so-called method of stationary phase to determine the contribution of the 
neighborhood of a stationary point t = c to the asymptotic development of the 
integral by expanding /(/) and h (t) in powers of t - c. As shown below, the 
principal contribution from the neighborhood of a stationary point is 0(a~^2), 
and hence, only the stationary points contribute to the leading term in the as
ymptotic expansion of 1(a), Next, we describe the method of stationary phase 
by applying it to four examples. 

Figure 3-5. A function with a stationary point. 



EXAMPLE 1 
We begin with a case in which h (t) has a stationary point at t = a correspond

ing to a maximum or a minimum and it has no other stationary points. More
over, we assume that f(a) is finite. According to the Stokes method of stationary 
phase, only the immediate neighborhood of t - a contributes to the leading term 
in the asymptotic expansion of 1(a). Hence, 

«<z + 6 

/(<*)~ f(t)eiah(t)dt (3.166) 
Ja 

where 8 is a small positive number. Thus, to the first approximation,/^) can be 
replaced by / (a) and h (t) can be expanded in a Taylor series as 

h(t) = h(a)+±h"(a)(t-a)2 + ••• 

because h'(a) = 0. Then, (3.166) can be rewritten as 

f a + 6 

e(l/2)iah"(a)(t-ay d t ( 3 1 6 ? ) 

«. 
Since only the immediate neighborhood of t = a contributes to the integral, 8 
can be replaced with °°. Letting t - a - z, we rewrite (3.167) as 

I(a)~f(a)eiah^ f e 0 / 2 ) / « ' » » * 1
 d z (3.168) 

-'o 

To evaluate the integral in (3.168), we appeal to Cauchy's theorem, which 
states that if the derivative of a function F(z) of a complex variable z exists and 
is continuous inside and on a closed curve C (i.e., F is analytic), then 

F(z)dz = 0 (3.169) 

where the integration is carried around the closed curve C. The basic idea is to 
choose C in such a way that the original Fourier integral is transformed into a 
Laplace integral, that is, the dominant part of the integrand is a real decaying 
exponential at <*>. In the case under consideration 

F(z) = exp [\ iah"(a)z7) (3.170) 

and its derivative exists for all values of z. Hence, Cauchy's theorem applies and 
we have (3.169). To apply Cauchy's theorem, we lake the closed curve C to con 
sist of the real axis x, a line making 45° to the real axis, and an eighth of a circle 
with the radius R, as shown in Figure 3-6. Hence, 
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(a) h"(a) < 0 (b ) h"(o) > 0 
Figure 3-6. Deformation of the contour of integration. 

/ F(z)dz + f F(z)dz + f F(z)dz=0 (3.171) 
*r, - r , - t , 

But on C 2 

z = x + iy = R cos 6 + iR sin 6 =Reie 

so that 

Z 2 =R2e2i0 = R 2 C Q S 2 f ? s i n 2f3 

Hence, in order that the contribution of C2 as /? -> «> vanishes, we must choose 
8 to be positive or negative jdepending on whether h"(a) is positive or negative, 
respectively. Moreover, in order that the integral be converted into a Laplace 
integral, the angle of rotation must be \it or -̂ 7r depending on whether h"(a) 
is positive or negative, respectively. Hence, it follows from Figure 3.6b that 
when h"(a)>0 

r R O / 4 ) * 

I F(z)dz=iR e-(i/2)cch (a)R2 sin 26+ (i/2)iah"(a)R2 cos 20+id d Q 

•t, •'o 
(3.172) 

Then, 

C I r ( I / 4 ) » R 

F(z)dz\<R e-{\l2)«h"(fl)R**n20 d e 

= /* I e-(l/2)ah ( a ) * * 2 0 </0 + I E - ( L / 2 ) A A » / ? J S I N 2 E ^ (3.173) 
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= ed/4)/Tr C e-W2)cch"(ay dr (3.175) 

JO 

Equation (3.175) shows that the Fourier integral in the neighborhood of a 
stationary point has been converted into a Laplace integral by rotating the 
contour of integration from the real x axis by the angle | n. Making the substi
tution 

V f afc"(<7)r = r 

in (3.175), we obtain 

(3.176) 

on account of (3.25). Using (3.176) in (3.168) yields 

/(a)—7^m ( > 

where e is a small positive number. Since h"(a) > 0 and sin 26 > 0 in the interval 
[e, \n], the integrand tends to zero uniformly, and hence, the last integral in 
(3.173) tends to zero there as R -»• °°. To estimate the integral over the interval 
[0, e ] , we approximate sin 26 by 20 and obtain 

R f E - ( L / 2 ) A / I » / ? 2 S I N 2 0 d Q ^ R f E - A / I » « ' » ^ 

JO 
I _ e-ah"(a)R2e 
- - - - • 0 as R -+ °° 

aRh"(a) 

Therefore, the integral over the contour C2 vanishes and it follows from (3.171) 
that 

I F(z)dz=- F(z)dz as /?-*<*> (3.174) 

Along the curve Cy, z = JC so that z 2 = x2, whereas along the curve C 3 , z = r 
exp (£ in) so that z 2 = r2 exp (| nr) = ir2, where r is the distance from the ori
gin to any point on C 3 . Then, substituting (3.170) into (3.174) yields 

f E ( I / 2 ) / A A " ( B ) * a
 d x _ _ E ( L/4 )/W f e - 0 / 2 ) < * / I > ) R J ^ 



As mentioned above, the contribution from the neighborhood of a stationary 
point is 0(a~^2) compared with the 0(a~l) contribution from an end point. 

When h"(a) < 0, the contour of integration needs to be rotated by the angle 
- so that 

2 = r e - ( l / 4 ) » > z 2 = r2e~(l/2)/ir = _ (rl 

Then, (3.168) becomes 

I(ot)~f(a)eiah(fl)-W>i1T f e ^ 2 ) a f , H ^ r i dr (3.178) 

which is a Laplace integral because h"(a) < 0. Making the substitution 

y/-{ah\a)r = T 

and using (3.25), we obtain from (3.178) that 

1(a)- v , as a-+°o (3.179) 

In general, one needs to rotate the real axis by an angle 8 so that iah"(a)z2 in 
(3.168) becomes a negative real number. Since 

z = reid z2 =r2e2id =r2 cos 26 + ir2 sin 26 

it follows that cos 28 = 0 or 6 = ± \ir. Then, 2 2 = ir2 sin 26 and 

iah"(a)z2 =-ar2h"(a) sin 28 

Consequently, when h"(a) > 0, one should take 6 = ̂ ir, whereas when h"(a) < 0, 
one should take 6 = so that the integral in (3.168) becomes a Laplace 
integral. 

EXAMPLE 2 
As a second example, we consider a case in which h(t) has a stationary point 

at t = c where a < c < b. We assume that h(t) has no other stationary points and 
that f(c) is finite. Hence, according to Stokes' method of stationary phase, the 
leading term in the asymptotic expansion of (3.163) arises from the immediate 
neighborhood of t = c and we write 

f c+6 
f(t)eiah(t)dt (3.180) 

where 5 is a positive small number. Hence,/(r) can be replaced with f(c). More
over, expanding h(t) in a Taylor series around t = c, we have 

h{t) = h(c) + | h"(c) (t - c)2 + • • • (3.181) 



because A'(c) = 0. Substituting (3.181) into (3.180), replacing/(f) with/(c) and 
r - c with z, and replacing 5 with °° , we obtain 

I(a)-f(c)eiah^ \ e(«2)i<*h"(c)z> d z ( 3 1 8 2 ) 

To evaluate the integral in (3.182) when h"(c) > 0, we rotate the contour of 
integration by the angle \ ir, so that z=r exp (|nr). The result is 

/(a) ~ / ( c ) e ' a , l ( c ) + ( 1 / 4 ) / 7 r J e~(lf2)ah
 ( c ) r 2 dr 

We make the substitution 

s/\oh'\c)r = T 

and obtain 

/ ( a ) ~ — v z m — L e dT 

Hence 

\Z2~n f(c) <!/«)'» 

m ~ %® a s " ~ ( 3 , 8 3 ) 

When h"(c) < 0, we rotate the contour of integration by the angle - make 
the substitution 

y/-\ah'\c)r = T 

and obtain 

Jlrrffc) e«'«Mc)-<i/4)i« 
/ ( a ) ^ V 2 r r / ( c i e ^ ^ 

\/-oth (c) 

EXAMPLE 3 
As a third example, we consider a case in which h(t) has a stationary point at 

/ = a, no other stationary points, and 

h'(a) = h"(a)=--- = h<n-1)(a) = 0 

but h^(a) # 0. We assume that f(a) is finite. We expand h(t) in a Taylor series 
and obtain 

h(t) = hia) + ~, (a) (/ - a)n + • • • (3.185) 
nl 

file:///Z2~n
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Then, it follows from (3.163) that to the first approximation 

ei«h<n\o)(t-af/ni d t (3.186) 

u 

Letting t - a = z, we rewrite (3.186) as 

f oo 

To evaluate the integral in (3.187), we convert it into a Laplace integral by rotat
ing the contour of integration by the angle 7r/2n when h^"\a) > 0 so that z = r 
exp (iitfln). The result is 

I((X)~f(a)eiahW+ilTl2n I e-^n\a)rnlnl d r q j g g ) 

The integral in (3.188) can be expressed in terms of the gamma function by 
making the substitution 

ah{n\a)rn 

= 5 nl 
and obtaining 

r-\ i r „i t i/n r°° 
s(l/n)-l e - s d s 

T 
J0 ,i[̂ )(a)J J0 

r_jiL_]̂ ẑ (3189) L̂<")(fl)J * ( 3 1 8 9 ) 

according to (3.108). Hence, (3.188) can be rewritten as 

r „. i-/»/(a)r9 
/ ( a ) ~ [ ^ ) J ~-r1''""*"'1™ ™ 0 1 9 0 ) 

When Mrt (̂fl) < 0, the contour of integration needs to be rotated from the real 
axis by the angle -n/2n. Then following steps similar to those above, one obtains 
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We note from (3.190) that the leading term in the contribution of a neighbor
hood of a stationary point to the asymptotic expansion of (3.163) is 0(oTy^n), 
where n corresponds to the order of the lowest derivative of h that does not 
vanish at the stationary point. Therefore, if /i(/) has many stationary points in 
[a, b\, the leading term to the asymptotic expansion of (3.163) arises from the 
neighborhood of the stationary point corresponding to the largest value of n. 
If more than one stationary point corresponds to the largest value of n, the 
leading term in the asymptotic expansion of (3.163) can be obtained as the 
summation of the leading contributions from the neighborhoods of these points. 

EXAMPLE 4 
In all preceding examples,/(f) is finite at the stationary point. In this example, 

we consider the preceding example when 

f(t)~fo(t-a)x as t^a (3.192) 

where X must be greater than -1 for the integral (3.163) to exist. Substituting 
for h(t) and / ( f ) from (3.185) and (3.192) into (3.163) and replacing b with «>, 
we obtain 

/ ( a ) ~ / 0 e ' a , , ( a > I it-a^e^^-rf^'clt (3.193) 

where X is assumed to be less than n - 1 for (3.193) to exist. Letting t - a ~ z, we 
rewrite (3.193) as 

I(ct)~foeiah(a) f ^j^wSl^dz (3.194) 

As before, when h{n\a) > 0, we transform (3.194) into a Laplace integral by 
rotating the contour of integration from the real axis by the angle n/2n so that 
z-r exp (in/2n). The result is 

I(a)~f0eiah<-a)+i(K*1)n,2n f r^e-a^Wr"!"1 dr (3.195) 
Jo 

The integral in (3.195) can be expressed in terms of the gamma function by 
making the substitution 

alSn\a)rn 

and obtaining 



f r\e-ah(n\a)r"/nl d/. = L 
X n 

ah{n)(a) 
I 5 - l + (X+l)/n 

J ft e~s ds 

ni , T(\+l )/n 

0 

X_+_l 

n 

\ah^\a)\ 

Substituting (3.196) into (3.195) yields 

f\ + 1 

(3.196) 

(3.197) 

When h^(a) < 0, rotating the contour of integration by the angle -rr/2n and 
following steps similar to those above, we obtain 

1(a)-
[-ah^(a)\ 

(X+O / r t/OF 
X+ 1 

(3.198) 

We note that (3.197) and (3.198) tend to (3.190) and (3.191) as X -+ 0. We note 
from (3.198) that if X + 1 >n, then the leading contribution to the asymptotic 
expansion of the integral arises from the end point t-b. 

3.5. The Method of Steepest Descent 

So far, we considered only integrals in which the arguments of the exponents 
in the integrands are either purely real (Laplace integrals) or purely imaginary 
(Fourier integrals). In this section, we consider integrals in which the arguments 
of the exponents in the integrands are complex. Thus, we consider integrals of 
the form 

/(<*)= J f(z)eah^dz (3.199) 

where a is a large real positive number, C is a contour of integration in the com
plex z plane, and f(z) and h(z) are analytic functions of z, regular in a region of 
the z plane that contains the contour of integration. A function h(z) is called 
analytic in the domain D of the z plane if it is defined and has a derivative at 
every point in the domain D. A function h(z) that is analytic in a region/), ex-



cept for a finite number of points, is said to be meromorphic in D. The excep
tional points are called the singularities of the function h(z). 

A function h(z) of a complex variable z = x + iv is differentiable at the point 

z0 if 

lim + - * ( * > ) ( 3 . 2 00 ) 
A z - 0 Az 

exists and is independent of the choice of Az . The limit is called the derivative 
of h(z) at z 0 and it is usually denoted by h'(z0) or dh(z0)jdz. Puttingz = x + /> 
in h(z)t one can usually separate the result into real and imaginary parts and 
obtain 

h(z) = h(x + iy) = <j>(x,y) + ty(x,y) (3.201) 

Substituting (3.201) into (3.200) and taking Az = Ax , we have 

dh 0 ( x o + Ax,y0)- 0 ( x o , ^ o ) 
— (z0)~ hm 
az A J C + O A X 

\p(x0 + Ax,y0)- 4>(x0,y0) 
+ 1 lim 

Hence, 

Ax+o Ax 

dh d0 di^ 
— = r 1 + ' T 1 at z = z 0 (3.202) 
dz dx dx 

Substituting (3.201) into (3.200) and taking Az = i Ay, we have 

dh 0 ( x o , v o + A y ) - 0 ( X O , ^ Q ) T ^ ( X Q , ^ Q + Ay)- \l/(x0,y0) 
— ( z 0 ) = Urn + hm ••— 
dz Ay*0 i Ay Ay*0 Ay 

Hence, 

dh d\p .90 _ 
— = T--I— at z = z 0 (3.203) 
az oy dy 

Since the derivative must be independent of the choice of Az for a function h(z) 
to be differentiable, the expressions in (3.202) and (3.203) must be the same. 
Thus, 

ox ox oy oy 

Separating real and imaginary parts in (3.204) yields the so-called Cauchy-
Riemann equations 
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3 0 _ a_0 
by bx 

r.liminating i// from (3.205) by cross differentiation yields 

d 2 0 8 2 0 

bx2 by 

whereas eliminating 0 from (3.205) by cross differentiation yields 

b2rj/ &j/ 

dx2 + by 

(3.205b) 

2 + - f = 0 (3.206) 

+ (3.207) 

To determine the asymptotic development of /(a) , we use the analyticity of 
the integrand and appeal to Cauchy's theorem (3.169) to deform the contour of 
integration C into a new contour C' on which either i// or 0 is constant, thereby 
transforming the integral into either a Fourier or a Laplace integral. Then, the 
asymptotic development can be determined by using either the method of 
stationary phase or Laplace's method. It is preferable to transform the integral 
into a Laplace integral (i.e., constant i|/) because the full asymptotic develop
ment of a Laplace integral arises only from the immediate neighborhood of the 
point where 0 is the largest on C'. In contrast, the full asymptotic development 
of a Fourier integral depends, in general, on the end points as well as all station
ary points of ^ on C\ 

We note that constant-phase contours are steepest descent and ascent con
tours. To show this, we appeal to the concept of gradient in. elementary calculus. 
The gradient of (f>(x,y) is defined by 

and the derivative of 0 in the direction defined by the unit vector n is 

-71 = V0 • n (3.209) 
dn 

Hence, the maximum value o f d<t>jdn occurs when n = V0/IV0I- Thus, the 
steepest ascent contours are parallel to V0 , whereas the steepest descent con
tours are parallel to ~V<P- It follows from the Cauchy-Riemann equations 
(3.205) that 

V 0 ' V ' / ' = O (3.210) 

so that v0 is perpendicular to and the derivative of i// in the direction V0 
is zero. Thus, \j/ is constant on contours whose tangents are parallel to V0 , 
showing that constant-phase contours correspond to steepest ascent and descent 
contours. 
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We should note that <f>(x,y) can never have a true maximum or rmnimum ex
cept at a singularity because if, for example, 

a 2 0 , d2<t> 
- ~ ~ < 0 then — v 

dx by 2 < 0 then - ~ > 0 (3.211) 

on account of (3.206). However, trie surface <p(x,y) may possess a flat spot at 
which 

bd> bd> 
— = — = 0 (3.212) 
ox oy 

Such a spot is called a saddle point because the surface (p(x,y) resembles a sad
dle or a mountain pass or a col, as shown in Figure 3-7. By the Cauchy-Riemann 
equations (3.205), we see that (3.212) implies that 

b& b& 
~ = TT = 0 (3.213) 
ox by 

Thus, a saddle point oi$(x,y) is also a saddle point of \p(xfy) as well as a point 
where h'(z) = 0. If z =z0 is a saddle point and if h'(z0) -h "(z0) = •-•- h^m\z0) = 0, 
we call z = z0 a saddle point of order m + 1. 

Through a saddle point zQ, there are two or more level curves (curves of con
stant 0) , separating the neighborhood of the saddle point into sectors. Moreover, 
through a saddle point, there are two or more constant-phase contours (curves of 

-*-x 

Figure 3-7. Topography of the surface <t> = R&h(z) near the saddle point z 0 , for a typical 
function h(z). The heavy solid curves follow the centers of the ridges and valleys from the 
saddle point, and the dashed curves follow level contours, 4> - <p(x0, yrf = constant. The 
curve A A' is the path of steepest descent. 
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constant 0 ) , which are the steepest paths through the saddle point. Some of 
these steepest paths descend, whereas the others ascend. 

Although the forms of the constant-level and -phase paths passing through a 
saddle may be complicated in the whole z plane, it is easy to find their forms 
near a saddle point. If the saddle point z = z0 is of order m 

h(z) *h(z0) + -V m ) ( z 0 ) (z - z0)m (3.214) 
ml 

Hence, if 

-^/i (m)(z0) =Keix z - z0 =reie (3.215) 
ml 

then, 

h(z) *h(z0) + K r m e i { x + m e ) = 0 +/0 

or 

4> = <p0+Krm cos (X + m0) 0 = 0 O + Krm sin (X + m$) (3.216) 

where 0 O and 0 O are the values of 0 and 0 at the saddle point. Thus, the level 
curves 0 = <f>0 passing through the saddle point are approximately given by 

cos (X + m0) = O or x + mO - ( « + \)* (3.217) 

where n = l , 2 , 3 , . . . , 2 m . Equation (3.217) provides the 2m constant level 
curves 8 = [(n + \)n - \] fm that divide the neighborhood of z0 into m hills and 
valleys. It follows from (3.216) that the constant-phase (steepest) contours 0 = 
i>0 are approximately given by 

sin(X + m0) = O or x + rnO =>™ (3.218) 

where rt = 1,2,3, . . . , 2 m . Equation (3.218) provides the 2m steepest contours 
8 = (nn - x)!m> m contours of steepest descent, and m contours of steepest 
ascent. 

In the simplest case, the saddle point is of order 2 so that there are two steep
est descent contours and two steepest ascent contours, as shown in Figure 3-8. 
Moreover, there are four constant level curves, separating the neighborhood of 
the saddle point into two hills and two valleys, as shown in Figure 3-8. For a 
saddle point of order 3, there are six constant-level contours, separating the 
neighborhood of the saddle point into three hills and three valleys. Moreover, 
there are three steepest descent contours in the valleys and three steepest ascent 
contours in the hills, as shown in Figure 3-9. 

The above discussion shows that an effective method of determining the 
asymptotic development of integrals whose end points lie in two different 



Figure 3-8. Topography of the surface <p = ReA(z) near a saddle point of order 2 when x = 

0. The valleys are shaded, the steepest curves dotted, the solid lines are the level curves, and 
the arrows indicate the direction in which <p decreases. 

valleys is the method of steepest descent developed by Riemann and Debye. It 
consists of deforming the contour of integration C to a new contour C' such that 

1. the contour of integration passes through a zero of h'(z); 

2. the imaginary part ^ ofh(z) is constant on the contour; 

3. the contour is that of steepest descent. 

If the restrictions on the deformed contour are such that it passes through more 
than one saddle point, each will make its contribution to the integral with the 
main contribution arising from the one corresponding to the largest 0. If h\z) 
does not vanish, the contour of integration is chosen to satisfy the second and 

Figure 3-9. Topography of the surface <t> " ReA(z) near a saddle point of order 3 when x = 

0. The valleys are shaded, the steepest curves dotted, the solid lines are the level curves, and 
the arrows indicate the direction in which <t> decreases. 
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third conditions only. Next, the method of steepest descent is described by its 
application to three examples. 

EXAMPLE 1 
As a first example, we consider the following integral representation of Bessel's 

function of the first kind and zeroth order: 

leads to singular expressions at z = ± 1. 
To determine an approximate expression for JQ(OC) for large a by using the 

method of steepest descent, we deform the contour of integration into a con
stant-phase contour. We note that h(z) = iz so that the phase 0 at z = 1 is 1, 
whereas the phase at z = -1 is - 1 . Thus, the contour cannot be continuously 
deformed into a single contour along which the phase is constant. However, we 
can deform the contour into one that consists of three line segments: Cx, which 
runs up from -1 to -1 + iY along a straight line parallel to the y axis; C 2 , which 
runs parallel to the x axis from -1 + iY to 1 + iY; and C 3 , which runs down 
from 1 + iY to 1 along a straight line parallel to the y axis, as shown in Figure 
3-10. By Cauchy's theorem (3.169), 

for large a (3.219) 

Integration by parts fails in this case because the choice 

u=eiaz dv = (\-z2Yil2dz 

leads to a nonasymptotic expansion, whereas the choice 

M = ( l - z 2 ) ~ 1 / 2 dv = eiazdz 

y 

H , Y ) ( O . Y ) ( I . Y ) 
C 

X 
(-1,0) (1,0) 

Figure 3-10. Contour deformation for (3.219). 
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, -dz (3.220) 

Strictly speaking, the contour of integration must be deformed as shown by the 
dotted lines to avoid the so-calJed branch singularities at x ~ ± 1. However, in 
the limit as p -*- 0 the integral tends to that given in (3.220). Hence, we will not 
worry about such border branch points in what follows. As Y -*• °°, the integral 
along C2 vanishes because the integrand vanishes uniformly there. Then, 

Making the substitution z = -1 + iy in the first integral and z = 1 + iy in the 
second integral, we rewrite (3.221) as 

, , ie~ia C e~ay ieia f° 
7T J 0 \/2iy+y2 7T J M 

,-ay 

\J-2iy +y2 

or 

7 0 ( a ) = e - * ^ - 1 ' 2 (1 - X iyyU2 dy 

V 2 J 0 

jeiot + (l/4)irr 

y/2n 
f e ^ V 1 ' 2 (1 + A z » ~ l / 2 4V (3-222) 

The integrals in (3.222) are Laplace integrals and only the immediate neighbor
hood of y = 0 contributes to their asymptotic developments for large a. Thus, 
using Watson's lemma, we expand the nonexponential parts of the integrands for 
small y and integrate the results term by term. The leading term in the as
ymptotic development of / 0 ( a ) * s 

-ia+(i/4)/7r r°° Ja-(i/4)nr r°° 
J o ( « ) ~ 5 — 7 = y'^e^dy* y~l<2 dy 

which, with the substitution ay = t.becomes 

/0(a) jL- [ e ^ O W f + ^ « - ( V 4 ) / « j f rK2 e - t d t (3223) 
\J2a.ir J0 

Using (3.121) and the identity 

( e ' d + e - , 0 ) - 2 c o s 0 

file:///J-2iy


we rewrite (3.223) as 

•A>(<*) ~ v ~ c o s ( a " i * ) a s a "* 0 0 (3.224) 
I 0£7T 

EXAMPLE 2 
As a second example, we consider the Airy integral 

Ai(cc) = - I cos (\ s* + as) ds for a » 1 (3.225) 

To transform (3.225) into an integral having the form (3.199), we introduce the 
transformation s = a 1 / 2 z and obtain 

Ai(a) = °~- j f cos [a3/2 (J z 3 + z ) ] rfz = ^ j {y*" 2 lO/3>z J « 1 

+ e - / a 3 / a | 0 / 3 ) ^ f x | ^ 2 S = ^ l f ^[(l/^z3+z) d z 

27T J0 27T J 0 

_ r j«>nnu3)z**z\ d z 

In J0 

Hence, 

Ai(a) * —1 f e / a 3 ' 1 | ( 1 / 3 > z 3 + 2 ' dz (3.226) 
2TT ^ _ O O 

Integration by parts yields a trivial solution because it forces the expansion to 
have the form of a power series in of 1 whereas, as shown below, the expansion 
has an exponential factor that tends to zero faster than any po\/er of a - 1 . 

To determine the asymptotic development of Ai(a), we use the method of 
steepest descent. Here, 

/j(z) = / ( ^ z 3 + z ) fc'(z) = /(z2 + 1) 

and the saddle points are the zeros of h'(z) = 0, that is, the points z ~ ±i. At 
the saddle points, 

A(±0 = / ( 4 ' ± = 



Hence, Im h(±i) = 0. Putting z =JC + iy in the expression for h yiems 

h(z) = /[J(x + z»3 + * + />] =^ (^ 2 - x2 - 1) + ix(\x2 - y2 + 1) 

(3.227) 

Since Im h - 0 at the saddle points, it follows from (3.227) that the steepest 
paths passing through the saddle points are given by Im h = 0, that is, 

x(\x2 -y2 + 1) = 0 (3.228) 

Equation (3.228) is a cubic equation consisting of the imaginary axis and of the 
two branches of the hyperbola 

A * 2 -y2 + 1 = 0 (3.229) 

These paths are shown in Figure 3-11 with arrows indicating the directions of 
decreasing Re h(z). Therefore, to apply the method of steepest descent, we 
deform the contour of integration from the real axis into the contour Cx 

1. which passes through the saddle point z = /, 

2. which is a constant-phase contour, and 

3. which is a steepest-descent contour from the saddle point. 

y 

x 

Figure 3-11. Constant phase contours including the steepest paths pa-sting through the 
saddle points for the Airy function; the arrows indicate the direction in which Re/i(z) 
decreases. 
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Ai(a)~ z — J dr (3.234) 

Next, we need to expand ( z 2 + l ) - 1 for small T , and hence, we need to deter
mine z as a function of T . T O this end, we expand the left-hand side of (3.232) in 
a Taylor series around z = / and obtain 

( z - 0 2 - \i(z-i)3=cT3L2T2 

whose solution for small r can be expressed in the form 

z = / + cT 3 / 4 T + - - - (3.235) 

Thus, 

( z 2 + l ) " 1 = (2/cf3 / 4 T)'1 as T - + 0 (3.236) 

Substituting (3.236) into (3.234) leads to the following expression for the lead
ing term in the asymptotic expansion of Ai(a): 

E-(2/3)<*3'2 

^< ( o0~ r 1 / 4 as (3.237) 
2\JTI or1 

It should be noted that detailed tracing of the steepest descent contours is 
seldom necessary because the asymptotic development of an integral wholy 
arises from the immediate neighborhoods of the points where <t> is greatest. 
These points could be interior or end points. In order that 0 be greatest at an 

The deformation is possible since the integral decays exponentially in the region 
between the contours as z -*• °°. Hence, we replace (3.226) with 

M«)*zr- f e1*"1^*1**'dz (3.230) 
2ir JCt 

Along C, , (3.229) holds so that x2 = 3(y2 - 1) and (3.227) becomes 

h(z)=y(2- ly2) for y>\ (3.231) 

Moreover, h(z) has its maximum at z = i ( i .e.,^ = 1). Therefore, the integral in 
(3.230) is a generalized Laplace integral and its asymptotic development can be 
obtained by using Watson's lemma. To this end, we make the substitution 

a3t2h(z) = i(x312 ( ± z 3 +z) = a3t2h(i)- T2 = -%a3'2 - T 2 (3.232) 

Hence, 

/a 3 / 2 ( z 2 + \)dz=-2rdT (3.233) 

and (3.230) becomes 

,-(2/3 ) a 3 " 

•not 
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interior point, it is necessary that such a point be a saddle point. Thus, in the 
present example, it is sufficient to trace a very short segment of steepest descent 
contour of integration through the saddle point. Since z = i is a saddle point, the 
exponent in (3.230) near this point can be approximated as 

ia3'2(\ z3 + z) = - | a3'2 - a312 (z - i)2 + • • (3.238) 

and the direction of the contour will be such that a3/2(z - i)2 = T2 is real and 
positive. Hence, for the leading term, we substitute (3.238) into (3.230), take 
the limits of integration from - 0 0 to °°, and obtain 

e-(2/3)a3" r- t 

A I ( A ) ~ - W ^ - L e~T d r 

Hence, 

e-(2/3)a, / 2 

Ai(a)~ r | / 4 as cc^oo (3.239) 

on account of (3.25). 

EXAMPLE 3 
As a final example, we consider 

1(a) = [ ea(*Kg-'y) dz (3.240) 

for large positive a where X is a complex number that is independent of a. The 
saddle points are given by 

A'(z) = T - ( 3 X z - z 3 ) = 0 or X - z 2 = 0 
dz 

Hence, they are located at z = ± X , / 2 . If we let X = a2 exp (2iu), then the saddle 
points are located at z = ±0 exp (iv). Since h"(z) = -6z is different from zero at 
the saddle points, the saddle points are of order two. 

To determine the asymptotic development of (3.240), we use the analyticity 
of the integrand and deform the contour of integration into the contour C that 
passes through the origin and the saddle point z = a exp (iv) and that is a steep
est-descent contour (see Figure 3-12). Tnus, we rewrite (3.240) as 

/(<*)= [ ea^3kz-2^dz= f e^3Kz'zi)dz (3.241) 

As mentioned earlier, only a very short segment C of the contour C passing 



through the saddle point contributes to the asymptotic development of /(a) . 
Hence, 

/ ( a ) - [ea«Kz-z3)dz (3.242) 

Since z - a exp (iv) is a saddle point, the exponent in (3.242) near this point can 
be expanded as 

a(3\z - z 3 ) = 2aa 3 e3iv - 3aa eiv(z - oeivf + • • • (3.243) 

and the direction of the path C will be such that 

3ocoeiv(z- oeivf = r 2 (3.244) 

where T 2 is real and positive. Hence, 

z - aeiv = ± — T = - r (3.245) 
s/3aa 

Thus, there are two possible choices for the direction of the path of integration, 
namely ~\v and it ~ \v. At this point, one needs to inspect the behaviors of <f> 
and # over the complex plane (Figure 3-12) in order to decide the sense in 
which the path passes through the saddle point. Figure 3-12 shows that the 
direction of the path of integration is -\v, so that we must take the positive sign 
in (3.245) because T goes from a negative to a positive value on the path. These 



values are taken to be - 0 0 and 0 0 according to Watson's lemma. Then, substitut
ing (3.245) into (3.242), we obtain for the leading term 

exp [-\w + 2aa3 e3iv] 

f3aa 
dr 

or 

i ( a ) ~ e x p i~ i i v + 2 c k t 3 e * l v ] a s a "* 0 0 

Exercises 

3.1. Show that as e 0 

• I 

•'rv 

sin et 1 , 1 . 
dt- e e 3 + e 5 

t 18 600 

3.2. Show that as x -*• 0 

• / f t 
f 3 ' 4 e-'dt-Ax1**- | x 5 / 4 + | x 9 / 4 

3.3. Show that as x °° 

(a) 

(b) 

I" — dt~e~x\~ —+— —1 t \x x2 x3 ac4J 
f °° e~r e~* f n n(* + 1) n(n+l)(n + 

I ^ d t ~ - ^ [ - x ~ + ~ ~ 

2) 

3.4. Show that as x -> 0 0 

dr ~ J C x e~* 
f l X - 1 ( X - 1 ) ( X - 2) 

1 
• 

3.5. Show that as JC - * 0 0 

e~f dt-e~x' 
J_ 1 1 • 3 1-3-5 

2x 22x3 23xs ' 4 „7 2*x 

3.6. Consider the complete elliptic integral of the second kind 

><l/2)tr 
Km) 1 - m sin2 0 dd 

(3.246) 

Show that 
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1 r 1 

- i r 1 - -
2 [ 4 

, . 3 , 5 , 175 . 
/(m) = — n 1 m m m m + 

~ ' 64 256 16384 

Compare this result with those tabulated in Abramowitz and Stegun. 
.1.7. Show thai us x * 00 

f ~ cost / 1 2! 4!\ / l 3! 5!\ 

3.8. Show that as x <» 
/ •OO 

I cost 1 
(a) I —j=rdt 7= (/cosx - g sin x) 

Jx \Jt \/x 

j sm t 1 
^ J ~ ~ 7 = ( / S M x + g cos x ) 

where 

~_L 1 , 3 , 5 1 -3 -5 -7 -9 
f ~ 2x ~ ( 2x ) 3 + (2x ) 5 

1 •3 1-3 -S -7 
* ~ 1 _ ( 2 x ) 2 + ( 2x ) 4 

3.9. Show that as x -*• °° 

, x . cos ( r - x ) 1 3! 5! 
(a) I d t ~ - - - + -

t X- X X r 
s i n ( f - x ) , 1 2! 4! 

(b) rfr 3 + — 

^ / x x* x 5 

3 .10. Show that as x °° 

(a) 

r dt 1 
Jx t2 In / x In 
Cx dt lr^ 

J, / In In t In In 

... x 
(b) 

)2 t In In t In In x 

3 . 1 1 . Show that as x -* <» 
r - .1/2 

(a) - L ^ - c / r ~ 2 x - ' / 2 - f x " 5 ' 2 + § x ' 9 ' 2 

1 + / 2 5 9 

(b) f J C (/ 3 +r 2 ) , / 2 c/r~|x 5 / 2 +^x 3 / 2 Jo 



3.12. Show that as x * 0 0 

In 2 
(a) | e~" In (2 + t)dt~ - -

x f In 

f (b) I e - * ' l n ( l + 0 ^ ~ - T 

f 1 xt 1 

(c) I e 1 sin / dt ~ — 

(d) f1 e - ^ r > + r + x r c / r ~ — 

3.13. Show that as co 0 0 

Jn CO+ X + . 

1 1 
dx ~ — -

/-i 4- v- 4- v- //.I 
'0 xy/cj co to3/" 

3.14. Show that as co -> 0 0 

2 co 

In 2 

(a) c - w < * a + 2 J f ) ( l + * ) 5 / 2 ^ - ^ 

(b) f e - " < * I + 2 J f > l n ( 2 + Jc)efr 
J 0 2 co 

J. o o ^ t 

0 4 W 

Jp « > e -w ( x 2 + 2 x ) pjf 

{ V* + 3x2 d X \2co 
3.15. Show that as co 0 0 

where X > - 1, b >a ,and h(x)> h(a). 

3.16. Show that as to-> 0 0 

e w x x 5 / 2 l n ( l + x ) d x 
J, 2 co 

[tofc'(a)~3 



J, 4OJ 2 

3.17. Show that as co 0 0 

rci) /•°° -to: 

f - f = 
Jo V * + 

(a) I - 7 = = r f x - - ' 4 

2co'/4 

(b) e-"*'XS'2 In (I + x) dx * ' ^ 

3.18. Show that as co «> 

\fH In 2 

\/co 
(a) I In (2 +x2)dx ~-

• ' - o o 

(b) I e ~ w x 2 In ( 1 + x 2 ) c / x 
• ' - o o 2co3 ' 2 

3.19. Show that as x -» 0 0 

(a) dt^j£Le-i* 

(b) [V*^1^ In ( 1 V 7 l n 2 " 
Ji 2>/x~ 

2 „~2* 

2x 
( c ) e - l ' * 0 / ' > l in r ~ e 

a c - x [ r + ( i / r ) l r ( l ) 
( d ) dt-

3.20. Show that as x -+ «> 

n ' i 

J0 1 + r 
(a) I <// 

nx''" 
f2 

1 f 

( b ) ) e-xt" \n (\ + t) dt ~ 

f1
 c *' 

( c ) — 7 = - ^ 

JN V ' 
3.21. Show that as a ~> 0 0 



Ai(-a) = - I cos U t3 - at)dt — ... sin ( | a3/1 + ̂  TT) 

3.22. Show that as a - » • 0 0 

f ^ l d / 3 ) r 3 + r | 

3.23. Show that as x 00 

1 fw [T 
J(i(x) ~ ~~ I c o s (•* c o s ^ ) ̂ 0 ~ l / COS ( X - I F F ) 

it J0 ynx 
3.24. Show that as a -* 0 0 

( a ) f e i a t 3 d t - ^ 

(l/6)/7T 

3a1/3 

P(I)e(l/l2)»W 

( c ) f e / a r 3 l n ( l + 

r 

r ( 2 ) e 0 / 3 )m 

( d ) e ' " r l n ( 2 + ?)c/r 
•0 

3.25. Show that as x - > ° ° 

3a2/3 

r ( ^ ) c ( i/6 )m l n 2 

3a1/3 

|jr-(l/4)ir| (b) a i ' V ) - 1 [ " - f i ^ d t - J ^ - e ' 
7T J, V 1 - f 2 y 7TX 

2 f*° sin XF FT . 
( c ) 7 0 ( x ) = - _ dt cos (x - % it) 

ir J, V 1 

2 f °° cosx f /2~ , 
fo(x) = ~ - \ r-^ dt " " y sin (x - ^ it) 

n Jx \Jt2 - 1 \f itx 

1 r 
„<*) = -

7T J n 

( d ) y 

JC cos0 „„_ „/j .0 e cos ay 

, 3.26. Show that as z • <*> 

T ( z ) = 1 < - < - ' « < y ! ^ - * 
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e i x t ( l t2)"-1'2 dt ~ (--) r</i+J)COSIJC- J»r(,i+})1 
3.28. Show that as co -+ <» 

1 I / u x i 

lnr e / w , </ r ~ -
/ In co 17 + j 

CO 

= - f e" ' In where 7 = - I e In f dt. 
0̂ 

3.29. Show that as a -+«> 

e a[z- ( i/3 ) «2 3 | rfz 

3.30. Consider the integral representation of the Legendre polynomial of 
order n 

Pn(rt°*-( [/i + V A t 2 - 1COS0)" 
* Jo 

dd 

Show that 

1 (n + y/jj^l)"*1'2 

r2mr ( V - l ) 1 

3.31. Consider the Airy function Bi(z) of the second kind defined by 

Pn{»)~~-7= , , N , / 4 A S 

/*oo 

Bi(z) = - [ e - W i + z t + smat3 +zt)] dt 
n J0 

(a) As z -*• °°, use Laplace's method for the first integral and integration by 
parts for the second integral and show that 

C , ( 2 / 3 ) Z 3 ' 2 

(b) Replace z by -a in the above integrals; then, use the Laplace's method for 
the first integral and the method of stationary phase for the second integral, and 
obtain 

3.27. Show that as x -»• °° 



CHAPTER 4 

The Duffing Equation 

The free oscillations of many conservative systems having a single degree of 
freedom are governed by an equation of the form 

d2x* 
^ + / ( * * ) = 0 (4.1) 

where / is a nonlinear function of JC*. Here, d2x*ldt*2 is the acceleration of 
the system, whereas / ( * * ) is the restoring force. Let x* - x* be an equilibrium 
position of the system; then, fix *) = 0. Moreover, assume that / is an analytic 
function at x* = x*; then, it can be expanded in a Taylor series as 

f(x*) = ky ix* - x*) + k2(x* - x*)2 + k3(x* - x*)3 + • • • (4.2) 

where 

1 dnf* 

nldx* 

Hence, (4.1) can be rewritten as 

d2x* 

dt*2 

+ ky ix* - x*) + k2 ix* - x*)2 + k3 ix* - x*)3 + • • • = 0 (4.3) 

Equation (4.3) describes the motion of the system in the neighborhood of the 
equilibrium position. It is convenient to introduce the transformation u* -x* -
x*, so that (4.3) becomes 

d2u* 
2j^- + kyu* + k2u*2 + k3u*3 + • • - = 0 (4.4) 

Most of this chapter is devoted to the following special case of (4.4): 

d2u* 
- + k,u* + k3u*3 = 0 (4.5) 

dt * 107 



where kx > 0 and k3 may be positive or negative. Equation (4.5) is usually 
called the Duffing equation. As mentioned in Chapter 1, one should make it a 
practice to write the governing equations in dimensionless form before solving 
them. To this end, we choose a characteristic length U* of the motion and a 
characteristic time T* and let 

_t*_ _ u* 

'~T* u~u* 

Using the chain rule, we have 

d _d dt _ 1 d 

dt*~dtdt* T*dt 

d2
 = 1 d2 

dt*2 T*2dt2 

Then, (4.5) becomes 

u +kxT*2u + k3T*2U*2u3 = 0 (4.6) 

It is convenient to choose T* so that kxT*2 = 1 and let e = k3 T*2U*2 = k3 U*2/ 
kt. Hence, (4.6) can be rewritten as 

i i +u + €M 3 =0 (4.7) 

We note that e is a dimensionless quantity, and it is a measure of the strength of 
the nonlinearity. As initial conditions, we take 

K ( 0 ) = X O « ( 0 ) = i 0 (4.8) 

The solution u of our problem is a function of the independent variable t and 
the parameter e. Hence, we write u = « (/ ; e ) , where the parameter e is separated 
from the independent variable t by a semicolon. In the next section, we deter
mine a straightforward approximation to (4.7) and (4.8) for small but finite e. 
This expansion is nonuniform for large times. Then, an exact solution is ob
tained in Section 4.2, and it is used to show that the frequency co of the system 
is a function of e (i.e., the nonlinearity). This fact is used in Section 4.3 to 
determine a uniform expansion by expanding both u and co in powers of e, this 
is, the Lindstedt-Poincare technique. In Section 4.4, we introduce the expansions 
for u and co into the straightforward expansion AND render it uniform or normal, 
this is, the method of renormalization. IN SECTION 4 .5, we describe the method 
of multiple scales, in Section 4.6, we describe the method of variation of param
eters (method of special perturbations), and IN Section 4.7, we describe the 
method of averaging. 



4.1. The Straightforward Expansion 

When e = 0, (4.7) reduces to 

ii + M = 0 (4.9) 

whose general solution is 

u0 =a0 cos(f + 0 o ) (4.10) 

where a0 and /30 are arbitrary constants. When e is small but different from zero, 
the general solution of (4.7) is no longer given by (4.10), and a correction must 
be added to it. We try a correction in the form of a power series in e, that is, we 
let 

u(t\ e) = w 0 ( f ) + eu,(0 + e 2 w 2 ( f ) + e 3 u 3 ( 0 + • • ' (4.11) 

Here, we restrict our discussion to the first term in the correction series. Thus, 
we seek an approximate solution in the form 

u(f,e)=u0(t)+ml(t) + 0(e2) (4.12) 

Since only one term is kept in the correction series, we call (4.12) a first-order 
expansion. 

We substitute (4.12) into (4.7) and obtain 

u0 + eUi + 0(e2) + u0+eul+ 0 ( e 2 ) + e[u0 + en, + 0(e2)]3 = 0 (4.13) 

Using the binomial theorem to expand the last term, we have 

[u0 +eu ! + 0 ( e 2 ) ] 3 = i 4 + 3u2
) [eua + 0 ( e 2 ) ] +3u0[eul + 0 ( e 2 ) l 2 

+ [eui + 0 ( e 2 ) ] 3 = i 4 +3eulul + 0 ( e 2 ) (4.14) 

Substituting (4.14) into (4.13) and collecting coefficients of equal powers of e, 
we obtain 

"o + " o + c ( « i + « i +u3
0) + O(e2) = 0 (4.15) 

We note that since we are only interested in terms up to 0 ( e ) , we need only the 
terms that are independent of e from the quantity inside the brackets in (4.13). 
This fact can be used to minimize the algebra. Setting e = 0 in (4.15) gives 

u0+u0=Q (4.16) 

Then, (4.15) becomes 

c(u, +u , + « o ) * O ( t 2 ) - 0 (4.17) 

Dividing (4.17) by e yields 
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ii, + ul +ul + O ( e ) = 0 (4.18) 

Setting e = 0 in (4.18) gives 

u, + a , + U 3 , = 0 (4.19) 

Comparing (4.16) and (4.19) with (4.15), we note that the former equations can 
be obtained by simply setting each of the coefficients of e equal to zero in 
(4.15). This is how one usually derives the equations governing uQ and ux. 
Moreover, we note that (4.16) and (4.19) have to be solved in succession. One 
first solves (4.16) for u0, substitutes the result into (4.19), and then solves for 

The general solution of (4.16) can be written as 

u0 = a 0 cos(f + /30) (4.20) 

where a0 and /30 are arbitrary constants. Substituting for « 0 into (4.19) yields 

ii, + i/j = -a% cos3 (t + 0 O ) (4.21) 

Equation (4.21) is an inhomogeneous equation whose general solution consists 
of the sum of a homogeneous solution and a particular solution (Appendix B). 
To determine a particular solution, we find it convenient to express the in-
homogeneous term in a Fourier series using the trigonometric identity (A 18) 

cos3 6 = \ cos 36 + | cos 6 

and rewrite (4.21) as 

"i + " I = " | a\ cos (t + 0 O ) " i a% cos (3f + 30 o ) (4.22) 

The homogeneous solution of (4.22) can be expressed as 

ulh=at cos(/ + /3,) (4.23) 

where ax and 0t are arbitrary constants. Since (4.22) is linear, one can use the 
principle of superposition and determine particular solutions as the sum of two 
particular solutions corresponding to the two inhomogeneous terms. That is, one 
determines a particular solution by adding two particular solutions of the 
following two equations: 

"i + " I = " | al cos (t + 0 O ) (4.24) 

"i + "i = " i a% cos (3t + 30 o ) (4.25) 

A particular solution of (4.24) is (B75 and B76) 

MS!

p

) = - | ^ / s i n ( / + /J0) (4.26) 

A particular solution of (4.25) is (B68 and B69) 
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Hence, according to the principle of superposition, a particular solution of 
(4.22) is 

ulp = - | alt sin (r + 0 O ) + ^ al cos (3/ + 30 o ) (4.28) 

Therefore, the general solution of (4.22) is 

u.\ = ax cos ( f + 0 i ) - I alt sin (t + 0 O ) + ^ al cos(3? + 30 o ) (4.29) 

Substituting for u0 and « , from (4.20) and (4.29), respectively, into (4.12) 
yields the following first-order expansion for the general solution of (4.7): 

u =a0 cos(/ + 0 o ) + e [ j , cos ( r + /?, ) - f <a$f sin ( f + 0 O ) 

+ ^ f l o cos(3/ + 30 o ) ] + •• • (4.30) 

where a0, ax, 0 O , and 0, are arbitrary constants. We started with a second-
order equation that can satisfy two initial conditions but it appears that we 
ended up with four arbitrary constants. It turns out that the constants a0, ax, 
0 O , and 0, are not arbitrary and that the two initial conditions (4.8) are enough 
to determine them. To see this, we substitute (4.30) into (4.8) and obtain 

x0 =a0 cos 0o + e(a, cos0i + ^ al cos 30 o ) + • • • (431 ) 

x0 = ~a0 sin 0 O - e(a1 sin 0, + f al sin 0 O + al sin 30 o ) + • • • (4.32) 

Transposing all terms to one side and equating the coefficients of the powers of 
e to zero in (4.31) and (4.32) is equivalent to equating the coefficients of like 
powers of e on both sides of these equations. The results are 

Order e° 

x0 = a0 cos 0 O (4.33) 

x0 =-a0 sin/30 (4.34) 

Order e 

ax cos 0i = - 3 j al cos 30o (4-35) 

ax sin 0, = - § a\ sin 0O - ^ al sin 30o (4.36) 

Squaring and adding (4.33) and (4.34) yields 

xl + i o " al cos2 0o + a l sin2 0 O = al 

or 

a0=(xl+xiy>2 (437 ) 

Then, solving (4.33) and (4.34) for 0O gives 
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0o =~sin = cos 
( *3+iS ) f ' a 

L(xa+*s)l/2J 
Similarly, solving (4.35) and (4.36) yields 

ai - J2 ol [cos2 30o + 9(sin 30o + 4 sin 0 O ) 2 ] 1 / 2 

«o cos 3/30 

. 3flo(4 sin |30 + sin 30 o ) _, 
( ! ' = " S , n 32 . , 32aj 

(438 ) 

(4.39) 

(4.40) 

Thus, once aQ and 0O are calculated from (4.37) and (4.38), ax and $x can be 
calculated from (4.39) and (4.40). 

Let us return to (4.30) and note that 

a0 cos (/ + 0O) + eax cos (/ + Px) 

= o 0 cos t cos 0o ' <*o sin t sin 0O + eax cos f cos 0! - eax sin f sin 0, 
= (a0 cos 0O + eflj cos 0,) cos f - (a 0 sin 0O + eax sin 0j) sin f 

= a cos / cos 0 - a sin f sin 0 
= a cos (f + 0) (4.41) 

(4.42) 

(4.43) 

(4.44) 

where 

fa cos 0 =a0 cos 0O + ffl] cos 0, 

{ a sin 0 = a 0 sin 0O + a? i sin 0! 

It follows from (4.42) and (4.43) that 

a0 = a + 0(e) 0O -,0 + 0 ( e ) 

Using (4.41) and (4.44), we rewrite (4.30) as 

u =ccos ( r + 0) + e { - § [a + 0(e)] 3t sin [ f + 0 + 0 ( e ) ] 

+ 3L [ a + 0(e))3 cos [3r + 30 + 0 ( e ) ] } + • - • 

Hence, 

u - a cos (/ + 0) + ear3 [ - | f sin (f + 0) + cos (3f + 30)] + • • • (4.45) 

We could have obtained this solution directly from (4.16) and (4.19) as follows: 
The solution of (4.16) is taken in the form 

M o = t f c o s ( / + 0) (4.46) 

Then, (4.19) becomes 

iij + w, = -a 3 cos3 (t + 0) = - | a3 cos (t + 0) - ± <z3 COS (3/ + 30) (4.47) 

Now, in writing down the solution of (4.47) , we take only the particular solu
tion. That is, we write the solution of (4.47) as 
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w, = - | a3t sin (t + 0) + ^ AT 3 cos (3/ + 30) (4.48) 

Substituting for u0 and ux from (4.46) and (4.48) into (4.12), we obtain (4.45). 
Thus, in solving problems of this kind, one has two choices. First, one may in
clude the homogeneous solution at each order and consider the arbitrary con
stants to be independent of e. Second, one may disregard the homogeneous 
solution at all orders except the first and consider the arbitrary constants to be 
dependent upon e. The latter choice is used in most of this book. 

Returning to (4.45), we find that to the first approximation 

We note that this correction is small, as it is supposed to be, only when et is 
small compared with unity. When et is O ( l ) , the term that is supposed to be a 
small correction becomes the order of the main term. Moreover, when et > 
0 ( 1 ) , the "small-correction" term becomes larger than the main term. Hence, 
the straightforward expansion (4.45) is valid only for times such that et < 0 ( 1 ) , 
that is, t < 0 ( e _ 1 ) . Consequently, we say such expansions are nonuniform or 
breakdown for long times and we call such expansions pedestrian expansions. 
The reason for the breakdown of this expansion is the presence of the term 
t sin (f + 0), a product of algebraic and circular terms. Such terms are called 
mixed-secular terms in the astronomy literature. The word secular is derived 
from the French word siecle, which means a century. This designation is the 
result of € being very small in astronomical applications and et becomes ap
preciable after very long times, the order of a century. Thus, for the expansion 
to be uniform, the corrections must be free of secular terms. In the next section, 
we obtain and examine the exact solution in order to determine the source of 
the secular terms. In subsequent sections, we develop methods that avoid secular 
terms, and hence, yield uniform expansions. 

4.2. Exact Solution 

Equation (4.7) belongs to the class of second-order equations from which the 
first derivative is absent. This class of equations can be integrated by making the 
change of variable u ~ u and changing the independent variable from t tow. To 
this end, we have 

u =a cos(r + 0) 

and that its first correction is 

- | a3 et sin (/ + 0) + ^ ea3 cos (3t + 30) 

dv dv du dv 
ii = v = — = = v — 

dt du dt du 
(4.49) 

Then, (4.7) becomes 
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v — + u + eu3=Q (4.50) 
du 

which, upon separation of variables, becomes 

vdv = -(u + eu3)du ( 431 ) 

Integrating (4.51) gives 

A v2 =h-(±u2+±eu*) = h-F(u) (4.52) 

where h is a constant of integration. Since v = u, \ v2 is proportional to the 
kinetic energy of the system. Since u + eu3 is proportional to the restoring force, 

F(u) = f(u + eu3)du = \u2 + \ ew4 

is proportional to the potential energy of the system. Hence, h is proportional 
to the total energy of the system. For a given h, (4.52) yields an integral of 
the motion in the uv plane, which is called the phase plane. It can be used to 
delineate the qualitative characteristics of the motion. 

To construct some of the integral curves in the phase plane, we draw first the 
curve F (u ) in Figure 4-1. When e > 0, F(u) has one stationary point, namely 
u = 0 . It corresponds to a minimum of F(u). On the other hand, when e < 0, 
F(u) has stationary points at u = 0 and u = ±|eT1''2 • The first point corresponds 
to a minimum of F(u), whereas the other two points correspond to maxima of 
F(u). Also shown in Figure 4-1 are three horizontal lines corresponding to dif
ferent values of h. It follows from (4.52) that 

- v = ± V 2 [h - F(u))l'2 (4.53) 

Thus, there are real values for v, and hence, there are real motions, if and only if 
h > F(u). Moreover, the motion is symmetric about the u axis. Since u = v, a 
representative point on an integral curve moves clockwise as t increases. 

When e > 0, there are real motions only when h > h0 = 0 . When h=h0) the 
integral curve consists of a single point, which is referred to as center. When h > 
h0, the integral curve consists of a closed trajectory, which corresponds to a 
periodic motion. Thus, all possible motions are periodic. 

When e < 0, there are real motions for all values of h. Figure 4-1 b shows that, 
when h = h0, the integral curve consists of the origin, a center, and two trajec
tories (branches), one opening to the right and one opening to the left. When h = 
h2, the integral curve consists of two trajectories passing through the points: 
u - |e|~1/2 and u = 0, and « = - le l - 1 ^ 2 and v = 0. These points are referred to as 
saddle points, and they correspond to the maxima of F(u) and are labeled by the 
letter S. The trajectories that pass through the saddle points are usually referred 
to as separatrices. When h < h0, the integral curve consists of two trajectories, 
one opening to the right and one opening to the left. When h0 < h < h2, the 
integral curve consists of three trajectories, one closed trajectory surrounding the 



Figure 4-1. Phase plane for 'he Duffing equation: {a) e > 0; (b) <= < 0. 
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origin, one trajectory opening to the right, and one trajectory opening to the 
left. Thus, periodic motions exist only when h0 <h <h2 and when the initial 
conditions restrict the motion to the closed branch of the integral curve. 

Next, we integrate (4.52). Using the initial conditions (4.8) in (4.52) and re
calling that v = u, we have 

5 xl ~ h - (j XQ + ^ £*o) 

Hence, 

h = $xl + \xl+i&l (4.54) 

Since v = u, it follows from (4.52) that 

u=±(2h-u2 - \eu*y>2 (4.55) 

where the positive and negative signs correspond to motions above and below 
the u axis, respectively. Upon separation of variables, (4.55) becomes 

du 
d ' - \ i k - ( 4 - 5 6 ) 

Integrating (4.56) gives 

du 

{ d t = ±lo(2h-u2-ieu*y'2 

Hence, 

ru du 
(2h-u2-ieu^2 ( 4 ' 5 7 ) 

Next, we specialize this solution to the case of periodic motions. 
Figure 4-1 shows that a closed trajectory (i.e., periodic motion) intersects the 

u axis at two points. Denote these intersections by u = -x0 and u = x 0 - Sub
stituting u = ±x 0 and v = « 0

 = 0 i n t o (4.54) and solving for h, we obtain 

h ~ \ xo ~k exo 

Hence, 

2h u7 \ cuA ~xl + \ ex4, - u2 \ euA 

"(xl u2)(l + { cxl + { eu2) (4.58) 

Then, (4.57) becomes 

J[w du 
, (xl-u2yl2(l + ±exl + ±eu2f2 ( 4 5 9 ) 



which can be put in a standard elliptic form by introducing the transformation 

u = -xQ COS 0 (4.60) 

Then, 

du = x0 sin 0 dd 

Moreover, u = ±xQ corresponds to 0 O = 0 and 7r. Hence, (4.59) becomes 

' d dd 
t = ±~ X i 

Je (1 + \ exl + \ J exl cos2 0 ) 1 / 2 

or 

where 

-±-rL*i \ , M , (4.6. ) 

V 1 + e x o d0 v 1 - m sin2 0 

Since the closed trajectory is symmetric with respect to the u axis, the time 
needed for the representative point to move from u - -x0 to u =x0 is one-half 
the period T. But u = -x0 corresponds to 6 - 0 and u = JC 0 corresponds to 6 = 
7r. Hence, it follows from (4.61) that 

2 f* d0 
7"= / , (4.63) 

V 1 + exo J0 V I - m sin2 0 

Since the integral in (4.63) over the interval [0, \ n] is the same as that over the 
interval [\ IT, TT] , (4.63) can be rewritten as 

>1/27T dd 
4 r 

T= . . (4.64) 
V 1 + exl V 1 - m sin2 0 

The integral (4.64) is called a complete elliptic integral of the first kind, and it is 
tabulated. The variation of T with exl is shown in Table 4-1. It is clear from 

T A B L E 4-1. Exact Periods of the Periodic Motions of the Duffing Equation 

nt 

0 0.02 0.04 0.06 0.08 0.10 

exl 0 0.042 0.087 0.136 0.190 0.25 
T 6.283 6.187 6.088 5.986 5.879 5.767 
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T A B L E 4-2. Variation of TJT with exl 

exl 0 0.042 0.087 0.136 0.190 0.25 
TJT 1.000 1.0004 1.002 1.004 1.007 1.013 

Table 4-1 that the period is a function of exl, and hence, the nonlinearity. Since 
the angular frequency to = 2ir/T, it is clear also that co is a function of the non-
linearity. This explains the breakdown of the straightforward expansion (4.45), 
which forces the angular frequency of the system to be unity, irrespective of 
the nonlinearity. This also suggests that any uniform expansion must account 
for the fact that the angular frequency is a function of the nonlinearity. The 
earliest technique that uses this fact seems to be the Lindstedt-Poincare tech
nique, which is discussed in the next section. 

When e is small, m is also small. Then, an approximation Ta to T can be ob
tained by expanding the integrand in (4.64). The result is 

Ta = , (1 + ± m sin2 6 + •• -)d0 

4 ,i i 2 n 
1 + . « 2 

y/T+exJ V 2 8 ' V T T e x U 8(l+ex?>) J 
« 2TT(1 - -J cxg + - • •) (1 + i exg + • • -) 

Hence, 

7* = 2 * ( 1 - § « ? , + •••) (4-65) 

Table 4-2 shows that the two term expansion for the period is close to the exact 
value. The error is only 1.3% for values of e*o as high as 0.25. 

4.3. The Lindstedt-Poincare Technique 

As discussed in the preceding section, the breakdown in the straightforward 
expansion is due to its failure to account for the nonlinear dependence of the 
frequency on the nonlinearity. Thus, any expansion that does not account for 
a nonlinear frequency is doomed to failure. A number of techniques that yield 
uniformly valid expansions have been developed. Four of these techniques are 
discussed in this chapter. We start with the Lindstedt-Poincare technique in this 
section. 

To account for the nonlinear dependence of the frequency, we explicitly 
exhibit the frequency co of the system in the differential equation. To this end, 
we introduce the transformation 

r - cor (4.66) 
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where co is a constant that depends on e. Then, we need to change the indepen
dent variable from t to T . Using the chain rule, we transform the derivatives 
according to 

dt dt dr dr 

d^_= dj_d^_= 2d^_ 
dt2 ^ dt dT dtdr2 ^ dT2 

Hence, (4.7) becomes 

c o V + « + eu3 = 0 (4.67) 

where the prime indicates the derivative with respect to r. We note that the 
actual frequency of the system now appears explicitly in the equation. Until 
now, both u and co are unknowns. We seek approximate solutions for them in 
the form of power series in terms of e. That is, we let 

u=u0 ( r ) + ew, ( r ) + • • • (4.68) 

CO = 1 + eGJ, + • • • (4.69) 

We note that the first term in the expansion of co is the linear frequency; in this 
case, the linear frequency is unity. The corrections to the linear frequency are 
determined in the course of the analysis by requiring the expansion of u to be 
uniform for all r. 

Substituting (4.68) and (4.69) into (4.67) gives 

(1 + eco, + • • - ) 2 ("o + €u[ + ' * ' ) + "o + ew, + • • • + e(w0 + a*i + • * f = 0 

which, upon expansion, becomes 

WQ + 2eco!u'o + ew, + -- - + u 0 + e w 1 + ••• + eul + • • • = 0 

or 

u'o +u0 +e(u" +«! +ul + 2co,uo)+ • • • = 0 (4.70) 

Equating each of the coefficients of e° and e to zero yields 

w o + w 0 = 0 (4.71) 

u[ + w3 = - ul - 2co, Wo (4-72) 

The general solution of (4.71) is 

u 0 = a cos (T + j3) (4.73) 

where a and 0 are constants. Then, (4.72) becomes 

u"i + « , = - o 3 cos3 (T + 0) + 2co,a cos (T + 0) 
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or 

u" + u, = (2co,fl - | a 3 ) cos (r + 0) - | a3 cos (3T + 30) (4.74) 

Trie particular solution of (4.74) is (B69 and B76) 

u% = \ (2co,ff - J a 3 ) T sin (r + 0) + £ a3 cos (3r + 30) (4.75) 

We note that the particular solution of ux contains a mixed-secular term, which 
makes the expansion nonuniform. For a uniform expansion, we cannot permit 
such secular terms to appear in w,, u2, u3, • • • . In contrast with the straight
forward expansion (4.45), where the secular term cannot be annihilated unless 
a = 0 (i.e., trivial solution for w), in this case, we still have to choose the param
eter co,. Thus, we choose it to annihilate the secular term. To this end, we set 
the coefficient of the secular term zero. That is, 

2co , * - f <z3 = 0 (4.76) 

Then, (4.75) becomes 

w, = ^ f l 3 cos(3r + 30) (4.77) 

Disregarding the trivial case a = 0, we find that (4.76) is satisfied ; f 

=f*2 (4-78> 
We note that, to determine the condition (4.76) for the elimination of the 

secular term from u,, we do not need to determine the particular solution first 
as done above. Instead, we only need to inspect the inhomogeneous terms in 
(4.74) governing w, and choose the coefficient of cos (r + 0) to be zero because 
this is the term that produces the secular term in . 

Substituting (4.73) and (4.77) into (4.68) yields 

u = a cos (r + 0) + ^ ea3 cos (3r + 30) + • • • (4.79) 

Substituting for co, from (4.78) into (4.69) yields 

co = 1 + | ea2 + • • • (4.80) 

Since r = cor, we rewrite (4.79) as 

u =tf cos [(1 + I ea 2 ) t + 0] + ^ ea3 cos [3(1 + \ ea2)t + 30] + • • • 

(4.81) 

Thus, the expansion (4.81) is uniform to first-order because secular terms do not 
appear in it and the correction term (the term proportional to e) is small com
pared with the first term. 

Next, we compare the period obtained in this section by using the Lindstedt-
Poincare technique with the approximate period (4.65) obtained in the pre
ceding section by expanding the integrand in the exact solution. Since the value 



u - -x0 is the intersection of the closed trajectory with the u axis, u = 0 when 
u = -x0. Using these values as initial conditions in (4.81), we have 

-x0 = a cos 0 + ea3 cos 30 + • • • (4.82) 

It follows from (4.82) that a2 = xl because 0 = 0 for ri(0) = 0. Hence, (4.80) 
becomes 

co = 1 + § exl + ' " 

But Ta = 27r/co, therefore 

r a = 2 7 r ( l + | e x g + - - - r 1 = 2 r r ( i - | c x j ) + - - - (4.83) 

which is in full agreement with (4.65). 

4.4. The Method of Renormalization 

Instead of introducing the transformation (4.66) into the differential equation 
and carrying out another expansion as in the preceding section (the Lindstedt-
Poincare technique), we introduce this transformation into the nonuniform 
straightforward expansion (4.45). It follows from (4.66) and (4.69) that 

t - co"1 r = (1 + ecoj + • • •)~1T = r ( l - ecoj + • • -) = r - ecojT + - • • 

(4.84) 

Then, (4.45) becomes 

u ~ a cos (r + 0 - ecoi r + • • •) + ea3 [- f (r - ecoj r + • • •) 

• sin (T + 0 - eco^ + • • •) + 31 cos (3T + 30- 3eco1r + • • • ) ] + • • • 

(4.85) 

Using Taylor series expansions, we have 

cos (T + 0 - eco, r + • • •) = cos (r + 0 ) + ecoj T sin (r + 0) + • • • (4.86a) 

sin (T + 0 - eco,r + • • •) = sin (T + 0 ) - eco,T cos (T + 0 ) + • • • (4.86b) 

cos (3r + 30 - 3eco, r +•••) = cos (3r + 30) + 360̂  r sin (3r + 30) + • • • 

(4.86c) 

Using these expansions, we rewrite (4.85) as 

u ~a cos (T + 0 ) + e |(co,« J a*) r s in (T + 0) + ^ «r3 cos (3T + 30)1 + • • * 

(4.87) 

In contrast with the straightforward expansion, in which the mixed-secular 
term cannot be annihilated unless a = 0, corresponding to the trivial solution, 
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we have built in (4.87) the parameter co,, which can be chosen to annihilate the 
mixed-secular terms. Thus, setting the coefficient of the mixed-secular term to 
/•'in, wc have 

cj.a I a* - 0 (4.88) 

Then, (4.87) reduces to 

u = a cos (T + 0) + ea3 cos (3T + 30) + • • • (4.89) 

Disregarding the trivial case a = 0, we find that (4.88) is satisfied when co, = 
| a2, in agreement with (4.78) obtained by using the Lindstedt-Poincare tech
nique. Comparing (4.89) with (4.79) we see that they are identical. Thus, the 
present technique yields the same expansion as the Lindstedt-Poincare tech
nique. Since the transformation (4.66) and (4.69) is introduced into the non
uniform straightforward expansion (4.45), which is then made uniform, the 
present technique is usually referred to as a uniformization or a renormalization 
procedure. 

4.5. The Method of Multiple Scales 

We return to the uniform expansion (4.81) obtained by using the Lindstedt-
Poincare technique and rewrite it as 

u = a cos (t + 0 + | eta2) + ^ ea3 cos (3r + 30 + \eta2) + • • • (4.90) 

We note from (4.90) that the functional dependence of u on t and e is not dis
joint because u depends on the'combination et as well as on the individual t and 
e. Thus, in place of u - u(t; e), we write u =u(t, et; e). Carrying out the expan
sion (4.90) to higher order, we find that a, besides the individual t and e, de
pends on the combinations et, e2t,e3t, • • •. Hence, we write 

u(t; e) = u(t, et, e2t, e3t, • • • ; e) 

or 

u(t;e)»u(T0,TltT2,T3t-~;e) (4.91) 

where the Tn are defined by 

T0 = t Tt=et T2=e2t T3 = e3t, • • • (4.92) 

We note that the Tn represent different time scales because e is a small param
eter. For example, if e = variations on the scale T0 can be observed on the 
second arm of a watch, variations on the scale T, can be observed on the minute 
arm of a watch, and variations on the scale T2 can be observed on the hour arm 
of a watch. Thus, T0 represents a fast scale, Tx represents a slower scale, T2 rep
resents an even slower scale, and so on. Since the dependence of u on t and e 
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d2 d2 

- T = r - T + 2 e — ' — — + e2 I 2 — — - + r L r ) + * * ' ( 4 - 9 4 ) 
dt2 dTl (*T0dT 1 ^ 1 

Hence, (4.7) becomes 

b2u d2u J d2u b2u , , , 
+ 2 e - — - — + e 2 2 - — — + — - ]+u + eu3 + • • = 0 (4.95) 

We note that we have replaced the original ordinary-differential equation by a 
partial-differential equation. Consequently, it appears that the problem has been 
complicated. This is true, but experience with this method has shown that the 
disadvantages of introducing this complication are far outweighed by the ad
vantages. Not only does this method provide a uniform expansion, it also pro
vides all the various nonlinear resonance phenomena, as we shall see in subse
quent chapters. 

We seek a uniform approximate solution to (4.95) in the form 

u = 110(7-0, Tx, T2 , • • • ) + en X (T Q , Tx, T2 , • • • ) + ' • • (4.96) 

Substituting for u from (4.96) into (4.95) gives 

^ + e ^ + 2 e — ~ + W o + e « . + e W o + - = 0 (4.97) 
87o o7o oT0oTx 

Equating each of the coefficients of e° and e to zero, we have 

9 2 «o 
2 + w o = 0 (4.98) 
o 

' +ux=-2~^--ul (4.99) 
dTl bT0dTx 

The general solution of (4.98) can be written as 

"o = a(Tx, T2, • • •) cos [TQ + &(TX, T2, • • •)] (4.100) 

We note that a and )3 are not constants but functions of the slow scales Tx, 
T2t • • - because u0 is a function of TQ, Tx, T2, • • • and the derivatives in (4.98) 
are with respect to T0. The functional dependence of a and 0 on Tx, T2, • • • 

occurs on different scales, we imagine that we have a watch and attempt to ob
serve the behavior of u on the different scales of the watch. 

Thus, instead of determining u as a function of /, we determine u as a function 
of T0, Tt, 7*2, • • • . To this end, we change the independent vaiiable in the orig
inal equation (4.7) iiom t to 7'0, '/',, 7'2 ' Using the chain rule, we have 

~ = -A - + e ~ + E2 + - . . (4.93) 
dt dT0 bTx ™ V 
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or 

~ i - + " i = 2 ~ s i n ( r o + 0)+ 2 a ^ - - f a 3 ) cos (T0 + 0) 

- | f l 3 cos(3ro + 30) (4.101) 

The right-hand side contains terms that produce secular terms in u,. For a uni
form expansion, these terms must be eliminated. This is accomplished by setting 
each of the coefficients of sin (T0 + 0) and cos (7"o + 0) equal to zero. The re
sult is 

da 
0 (4.102) 

2 a ^ r - ! < z 3 = G (4.103) 

Then, the particular solution of (4.101) becomes 

w, = f 2 a 3 cos (3r0+ 30) (4.104) 

The solution of (4.102) is a = a(T2,Ts, • • ' ) • Then, if a =£0, (4.103) can be 
rewritten as 

ar, 8 

whose solution is 

0 = 1 ^ ^ + 0 0 ( ^ , 7 3 , - ) (4.105) 

Substituting for uQ and ux from (4.100) and (4.104) into (4.96), we have 

u = a cos (r 0 + 0) + j - 2 ea3 cos (37*0 + 30) + • • • (4.106) 

Substituting for 0 from (4.105) into (4.106) and recalling thata = a(7"2, T3t-' •)• 
we obtain 

is not known at this level of approximation; it is determined at subsequent levels 
of approximation by eliminating the secular terms. 

Next, we substitute (4.100) into (4.99) and obtain 

~^r~t + U l = -2 r——-bcos ( r o + 0 ) ] - a 3 cos3 (7o+0) 
oT0 oT0oTi 

da dB 
= 2 — sin (T0 + 0) + 2a — cos (7*0+0) 

oJi oil 

- f a3 cos (7*o + 0) - J a 3 cos (3r0 + 30) 
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u = a(T7, T3, • • )cos [T0 + f 7>2(r2, :r3, • • o+M^, r3, • • •)] 
+ ±ea\T2,T3, • • -)cos [ 3 r c + \Txa\T2y T3, • • •) 

+ 3/J0(;r2, r3,---)] + ••• (4.107) 

If we stop the expansion as in (4.107), a and 0 can be considered constants to 
within the order of the error indicated. This is so because 

a(T2,T3,---) = a(e2t, e3t, • • •) 

n . da -
= a(0,0,--) + —€2t+--

= a+0(e2t) 

Po(T2,T3, •••) = 0o (e 2 r , e 3 r , - - - ) 

= 0o(O,O, •••)3f
2/ + -

o / 0 

= 0o + O(e2r) 

Thus, replacing a and 0 O by the constants a and 0 O in (4.107), we have 

w=£cos (7* 0 + | Txa2 + 0 O ) 

+ f2 e£3 cos (3T0 + | 7\a 2 + 30 o ) + 0(e2t) (4.108) 

In terms of the original variable t, (4.108) can be expressed as 

u = a cos (/ + | eta2 + &>) + ^ ea3 cos (3/ + | eta2 

+ 3&>) + 0 ( e 2 r ) (4.109) 

in agreement with the expansion (4.90) obtained by either the Lindstedt-Poincare 
technique or the method of renormalization. 

Inspecting (4.109), we find that the error is 0 (1 ) , and hence, the order of the 
first term when t = 0(e~2). Thus, (4.109) is not valid for t > 0 ( e ~ 2 ) . Moreover, 
if / = Ofe " 1 ) , the error is O(e), and hence, the order of the second term. There
fore an expansion that is valid when t = 0 ( e _ 1 ) consists of the first term only. 
That is, 

u = a cos (f + | eta2 + &>) + O(e) (4.110) 

for all times up to 0 ( e _ i ) . This means that to determine a uniform first-order 
expansion, we need only to eliminate the terms that produce secular terms from 
the equation for ux without actually solving for u, , thereby determining the de
pendence of u0 on Ti. Similarly, in determining a first-order uniform expansion 
by using either the Lindstedt-Poincare technique or the method of renormaliza
tion, we need only to eliminate the secular terms from the equation describing 
« j , and hence, determine cox. Furthermore, in the higher approximations, we let 
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N-l 
M = £ €nun(T0lTl,--,TN)+O(eN) (4.111) 

fi=0 

I hat is, if we are after an jVth-order expansion, we include the scales T0, Tx, • • • , 
TN but we do not include the term 0(eN). 

Before closing this section, we present an alternative representation of the 
solutions of the perturbation equations; namely, we represent the solution of 
(4.98) in a complex form rather than the real form (4.100). To this end, we use 
the fact that (A22) 

cosfl =\(eie +e'id) 

Thus, (4.100) can be rewritten as 

= } « ^ » + } f l f ^ + » 

or 

u0=Ae'T° +Ae-,T<> (4.112) 

where A is the complex conjugate of A and 

A=\aei& (4.113) 

For a first-order expansion, we consider ,4 to be a function of Tx only. 
Substituting (4.112) into (4.99), we have 

01o vl\ Ol\ 
Expanding the cubic term in (4.114) and collecting coefficients of harmonics, 
we obtain 

STi \ ST, I \ a r , 

(4.115) 

We note that the terms proportional to exp (/T0) and exp (- zT 0 ) produce sec
ular terms in the particular solution of Thus, for a uniform expansion, each 
of the coefficients of exp (/T0) and exp (- zT 0 ) must vanish. That is, 

2 i | ^ - + 3,4 2 I = 0 (4.116) 
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We remind the reader that, for a uniform first-order solution, we do not need to 
solve for ux and it is sufficient to inspect equation (4.115) and eliminate the 
terms that produce secular terms in u x. 

Comparing (4.116) and (4.117), we find that they are not independent be
cause taking the complex conjugate of (4.116) leads to (4.117). Hence, if one of 
them is satisfied, the other is automatically satisfied. To analyze (4.116), we re
place A by its polar form (4.113). The result is 

+ 3 - - e 2 ' " ^ - ^ = 0 
4 2 

or 

or 

bTx oTx 

ba ^ 0 . 3 3 
i~--a-^-+ia3 = 0 (4.118) 

bTx dTx
 8 

We recall the fact that a complex number vanishes if and only if its real and 
imaginary parts vanish independently. Since a and 0 are real, the independent 
vanishing of the real and imaginary parts in (4.118) yields 

ba 
— = 0 (4.119) 

bTx
 8 

in agreement with (4.102) and (4.103) obtained above by expressing the solu
tion in real form. Comparing the complex with the real representation, we find 
it more convenient to use the complex form. Thus, the complex form is used 
in the remainder of the book. 

4.6. Variation of Parameters 

When e = 0, the solution of (4.7) can be written as 

w=f fcos (/ + 0) (4.121) 

where a and 0 are constants, which are sometimes referred to as parameters. It 
follows from (4.121) that 

« = - f lsin(/ + 0) (4.122) 

When e ^ O , we assume that the solution of (4.7) is still given by (4.121) but 
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with time-varying a and 0 . In other words, we consider (4.121) as a transforma
tion from u(t) to a(t) and /3(f). This is why this approach is called the method of 
variation of parameters. Using this view, we note that we have two equations, 
namely (4.7) and (4.121), for the three unknowns u(f), a(t), and /3(f). Hence, 
we have the freedom of imposing a third condition (third equation). This condi
tion is arbitrary except that it must be independent of (4.7) and (4.121). This 
arbitrariness can be used to advantage, namely to produce a simple and conve
nient transformation. Out of all possible conditions, we choose to impose the 
condition (4.122), thereby assuming that u as well as u have the same form as 
the linear case. This condition leads to a convenient transformation because it 
leads to a set of first-order rather than second-order equations for a(t) and /3(f). 

Differentiating (4.121) with respect to f and recalling that a and 0 are func
tions of f, we have 

u = -a sin (f + j3) + a cos (f + 0 ) - aB' sin (f + 0 ) (4.123) 

Comparing (4.123) with (4.122), we conclude that 

ccos ( f + B)- aj3sin(f + 0 ) = O (4.124) 

Differentiating (4.122) with respect to t, we obtain 

u --a cos (f + 0 ) - a sin (f + 0 ) - aB cos (f + 0 ) (4.125) 

Substituting for u and u from (4.121) and (4.125) into (4.7), we have 

a sin (f + 0 ) + aB cos (f + 0 ) = ea3 cos3 (r + 0 ) (4.126) 

We note that (4.124) and (4.126) constitute a system of two first-order equa
tions for a and 0 . They can be simplified further. To this end, we multiply 
(4.124) by cos(f + 0 ) and (4.126) by sin (f + 0 ) , add the results, recall ( A l ) , 
and obtain 

d = ea3 sin (f + 0 ) cos3 (f + 0 ) (4.127) 

Substituting for a into (4.124) and solving for 0 , we obtain 

0 = ea2 cos4 (/ + 0 ) (4.128) 

if a^O. Thus, the original second-order equation (4.7) for w(f) has been re
placed by the two first-order equations (4.127) and (4.128) for a(t) and 0 ( f ) . 
We emphasize that no approximations have been made in deriving (4.127) 
and (4.128). 

Comparing the transformed equations (4.127) and (4.128) with the original 
equation (4.7), we find that the transformed equations are more nonlinear than 
the original equation. Then, the question arises what is the value of this trans
formation? The answer to this question depends on the value of e. If e is small, 
the major parts of a and 0 vary more slowly than u with f as shown in Figure 
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/3(t) 

a(t) 

U(t) 

t 

Figure 4-2. The variation of a, p, and u with / for c(0) = 1.5, 0(0) = 0.0, and c = 0-05. 

4-2. This fact can be used to advantage analytically and numerically. The analyt
ical advantage is utilized in the method of averaging (Section 4.7). Numerically, 
it is advantageous to solve the transformed equations-instead of the original 
equation because a large,step size can be used in the integration. This is the 
reason why astronomers use the method of variation of parameters to determine 
the equations describing the parameters of the orbits. Then, they numerically 
solve the variational equations rather than the original equations. Usually, as
tronomers and celestial mechanicians refer to this approach as the "special 
method of perturbations." 

4.7. The Method of Averaging 

Using the trigonometric identities 

sin 0 cos3 0 = % sin 20 + | sin 40 

cos4 0 = | + | cos 20 + Jj cos 40 

we rewrite (4.127) and (4.128) as 

where 0 = t + 0. Since - 1 < sin n<t> < 1 and -1 < cos n<p < 1, a = 0(e) and 0 = 
0(e) if a is bounded. Thus, the major parts of a and 0 are slowly varying func
tions of time if c is small, as shown in Figure 4.2. Hence, they change very little 
during the time interval 7r (the period of the circular functions) and, to the first 
approximation, they can be considered constant in the interval [0,7r]. 

We average both sides of (4.129) and (4.130) over the interval [0,7r] and 
obtain 

a = | ec3(2 sin 20 + sin 40) 

0 = £ ea2(3 + 4 cos 20 + cos 40) 

(4.129) 

(4.130) 
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1 1 rn 

- I adt = — e fl3(2 sin 20 + sin 40) dt (4.131) 
ff J o 8 j r Jo 

I f " . 1 fw 

- Bdt = — e a 2 (3 + 4 cos 20 + cos 40) df (4.132) 
7T J 0 87T J 0 

Since a and j3 can be considered constant in the interval [0, u] ,a,a, and j3 can 
be taken outside the integral signs in (4.131) and (4.132). The result is 

. i 3 r 
8tt J0 

(2 sin 20 + sin 40) dt (4.133) 

1 f w 

0 = f e a 2 + — ea2 (4 cos 20 + cos 40) dt (4.134) 
8ff J 0 

Next, we change the integration variable from / to 0 = t + 0 . Hence, cf0 = cff be
cause 8 can be considered constant in (0, rc]. Substituting this change of variable 
into (4.133) and (4.134) gives 

1 3 f 
— ea* 
8tt 1 

(2 sin 20 + sin 40) d<f> 
'9 

8tt 
efl3(cos 20 + \ cos 40) 

7T+/5 

= 0 ' (4.135) 

i r+i 

0 = | ea2 + — ea2 (4 cos 20 + cos 40) d<t> 

I ea2 + -p- ea2(2 sin 20 + | sin 40) 
o7T 

w + /3 
- 2 
~ 8 

(4.136) 

This averaging technique is usually referred to as the van der Pol method or the 
Krylov-Bogoliubov method. 

It follows from (4.135) that 

a - a0 - constant (4.137) 

Then, it follows from (4.136) that 

B=%ealt + B0 (4.138) 

where B0 is a constant. Substituting for a and B into (4.121), we obtain to the 
first approximation 
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u=a0 cos [(1 + | eal)t + p0] (4.139) 

in agreement with the solutions obtained by using the Lindstedt-Poincare tech
nique, the method of renormalization, and the method of multiple scales. 

Before closing this section, we note that one can arrive at the final results in 
(4.135) and (4.136) without going through the averaging process. We note that 
the right-hand sides of (4.129) and (4.130) are the sum of two groups of terms— 
a group that is a linear combination of fast varying terms and a group that is a 
linear combination of slowly varying terms. Then, to the first approximation, 
a in (4.129) is equal to the slowly varying group on its right-hand side, which is 
zero. Moreover, to the first approximation, /? in (4.130) is equal to the slowly 
varying group on its right-hand side, which is | ea2. 

Exercises 

4.1. Use the method of renormalization to render the following expansions 
uniformly valid: 

(a) u(t;e) = a cos (co0f + 0) + ea3t sin (u0t + 8) + 0(e2) 
(b) u(r; e) = a cos (co0t + 8) + e[a2t sin (to0r + 0) + (1 - a2)at cos (u>0t + 8)} 

+ 0(e2) 

4.2. Consider the equation 

u + (JQU = eu2u e « l 

(a) Determine a two-term straightforward expansion and discuss its uniformity. 
(b) Render this expansion uniformly valid by using the method of renor

malization. 
(c) Determine a first-order uniform expansion by using the Lindstedt-Poincare 

technique. 
(d) Use the method of multiple scales to determine a first-order uniform 

expansion. 
(e) Use the method of averaging to determine a first-order uniform expansion. 

4.3. Consider the equation 

ii + 4u + eu2u = 0 

(a) Determine a two-term straightforward expansion and discuss its uniformity. 
(b) Render this expansion uniformly valid by using the method of renor

malization. 
(c) Determine a first-order uniform expansion by using the Lindstedt-Poincare 

technique. 
(d) Use the method of multiple scales to determine a first-order uniform 

expansion. 
(e) Use the method of averaging to determine a first-order uniform expansion. 

4.4. Consider the equation 
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(a) Determine a two-term straightforward expansion for small but finite u and 
discuss its uniformity. 

(b) Render this expansion uniformly valid by using the method of renor
malization. 

(c) Determine a first-order uniform expansion by using the Lindstedt-Poincare 
technique. 

(d) Use the method of multiple scales to determine a first-order uniform 
expansion. 

(e) Use the method of averaging to determine a first-order uniform expansion. 

4.5. Consider the equation 

u + COQW = eu5 e « 1 

(a) Determine a two-term straightforward expansion and discuss its uniformity. 
(b) Render this expansion uniformly valid by using the method of renor

malization. 
(c) Determine a first-order uniform expansion by using the Lindstedt-Poincare 

technique. 
(d) Use the method of multiple scales to determine a first-order uniform 

expansion. 

(e) Use the method of averaging to determine a first-order uniform expansion. 

4.6?) The motion of a simple pendulum is governed by 

6i + - sin 0 = 0 

e 
(a) Expand for small 0 and keep up to cubic terms. 
(b) Determine a first-order uniform expansion for small but finite 0. 

4.7. Consider the equation 

g 
6i = £22 sin 0 cos 0 sin 0 

R 
(a) Expand for small 0 and keep up to cubic terms. 

(b) Determine a first-order uniform expansion for small but finite 0. 

4.8. The motion of a particle on a rotating parabola is governed by 

( I + 4p2x2)x + A v + 4i>2i2x « 0 
where p and A are constants. Determine a first-order uniform expansion for 
small but finite x. 
4.9. Consider the equation 

to2u 



(a) Expand for small u and keep up to cubic terms. 

(b) Determine a first-order uniform expansion for small but finite u. 

4.10. Consider the equation 

(I2 + r2 - 2/7 cos 0)0 + rl sin 00 2 + gi sin 0 = 0 
where g, r, and / are constants. Determine a first-order expansion for small 
but finite 0. Expand first for small 0 and keep up to cubic terms. 

4.11. Consider the equation 

(1
L
2l2 + r262)6 + r2d$2 + grd cos 0 = 0 

where r, I, and g are constants. Determine a first-order uniform expansion for 
small but finite 0. 

4.12. Consider the equation 

mx + kx(x2 + l2)~l/2[(x2 +12)*'2 - \ I] = 0 

Determine a first-order uniform expansion for small but finite x. 
4.13. Expand the integrand in (4.64) up to 0(m2) and obtain 

r a = - ~ = ( i + J m + > 2 + - - - ) 
V1 + €XQ 

Then, express Ta in terms of m as 

7 f l
( 1 ) = 2TTV1 " 2m (1 + + ^ m 2 + • • ) 

and in terms of x0 as 

r ( 2 ) = 2 7 r ( l - | e x 0 + 2 ^ V 0 + - - - ) 

Show that is more accurate than by comparing them with the tabulated 
values of the exact solution (4.64). Note that can be obtained from TJf* by 
using the Euler transformation m = e*o/2(l + exl). Often, this transformation 
extends the validity of an asymptotic series. 

Mohsen
Highlight



CHAPTER 5 

The Linear Oscillator 

In contrast with the preceding chapter, in which we discussed conservative 
systems, in this chapter, we discuss systems with damping. To describe the 
techniques with the minimum amount of algebra, we use the simplest possible 
equation with damping, namely the equation governing the free oscillations of 
a particle with mass m connected to a rigid support by a spring with constant 
k and a dashpot with coefficient n, as shown in Figure 5-1. The governing equa
tion can be written as follows: 

d2u* du* 

In the absence of damping, the system has the angular frequency coQ - yjkjm. 
As before, we introduce dimensionless variables 

t-co0t* and u = u*/u* 

where u* is any characteristic displacement such as the initial displacement. 
Then, (5.1) becomes 

« + 2ew + w = 0 (5.2) 

where e = \ uly/km is a measure of the ratio of the damping force to the restor
ing force of the spring and dots denote the derivatives with respect to t. In this 
chapter, we consider the general solution for (5.2) for small e. 

We start in the following section by the straightforward expansion and discuss 
its nonuniformity. In Section 5.2, we investigate the exact solution to exhibit 
the source of nonuniformity. In Section 5.3, we show that the Lindstedt-Poincare* 
technique may lead to the trivial solution. In Section 5.4, we show how the 
method of multiple scales leads to a uniform expansion. Finally, in Section 5.5, 
we use the method of averaging to determine a uniform first approximation. 
1 1A 
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Figure 5-1. A mass restrained by a spring and a damper. 

5.1. The Straightforward Expansion 

We seek a second-order straightforward expansion in powers of e in the form 

u(t; e) = « 0 (0 + «*,(0 + e2u2(t) +•-• (5.3) 

Substituting (5.3) into (5.2) yields 

u 0 + eiii + e2ii2 + • " + 2e(u0 + eux + e2u2 + •••) + u0 + eux + e2u2 + • • • = 0 

Collecting coefficients of equal powers of e gives 

"o + "o + e(#i + ux + 2u0) + €2(ii2 +u2 + 2iix) + • • • = 0 

Equating coefficients of like powers of e to zero yields 

« o + " o = 0 (5.4) 

ux + « j = - 2 « 0 (5-5) 

« 2 + «2 = ~2«i (5.6) 

These equations can be solved sequentially for u0, ux, and u2. 
The general solution of (5.4) can be written as 

w0 = a cos (t + 0) (5.7) 

where a and 0 are constants. Then, (5.5) becomes 

ux + « j = 2a sin ( f + 0) (5.8) 

As discussed in Section 4.1, we do not need the homogeneous solution of (5.8) 
if we allow a and 0 to be functions of e when enforcing the initial conditions. 
Then, we write the solution for ux as the particular solution only. It follows 
from (B81) and (B82) that the solution of (5.8) is 

w, = -at cos (r + 0) (5.9) 

Substituting for ux into (5.6) yields 

u2 + u2 = 2a cos (t + 0) -2at sin (f + 0) (5.10) 



ine particular solution 01 p . i u ; can De oDtaineu usmg operational calculus, or 
variation of parameters, or the method of undetermined coefficients. The result 
is (B69 and B76) 

u2 = \ at2 cos (f + 8) + | at sin (r + 8) (5.11) 

Substituting for u0, uv, and u2 from (5.7), (5.9), and (5.11), respectively, into 
(5.3) gives 

u - a cos (t + 8) - eat cos (t + B)+ \ e2a [t2 cos (f + 8) + t sin (f + 0)] + • • • 

(5.12) 

This straightforward or pedestrian expansion is not valid when t > 0(e~l) due 
to the presence of the mixed-secular terms. We note that the secular terms 
become more compounded at higher orders. The first approximation has a 
linear secular term, whereas the second approximation has a quadratic secular 
term. Carrying out the expansion to Hth-order, one finds that the nih approxi
mation contains an «th secular term t". Next, we discuss the exact solution and 
investigate the source of the secular terms. 

5.2. Exact Solution 

To exhibit the source of nonuniformity and motivate the methods that yield 
uniform expansions, we investigate the exact solution to (5.2). Since (5.2) is 
a linear differential equation with constant coefficients, it has solutions in the 
form 

u = cexp(X/) (5.13) 

where c and X are constants, which may be complex. Substituting (5.13) into 
(5.2) yields 

(X2 + 2eX+ l ) cexp (X f ) = 0 

Hence, for a nontrivial solution 

X 2 + 2 e X + l = 0 (5.14) 

or 

X = - e ± \ / e r r T 

When e < 1, it is convenient to write (5.15) as 

X = -c ± - c7 

Then, the general solution of (5.2) can be written as 

u — c\ exp [-et + i V l _ e2 t) + c2 exp [-et - i\f\ 

(5.15) 

(5.16) 

~^t) (5.17) 
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conjugate of c\. To write (5.17) in terms of circular functions, we express c, 
and c 2 in the polar forms 

c, = \ a exp (i0) c 2 = \ a exp (-/0) 

where a and 0 are real constants. Then, (5.17) becomes 

u = ae~et cos ( V l - e 2 f + 0) (5.18) 

To exhibit the source of the nonuniformity, we determine the first three terms 
in the expansion of (5.18) for small e and compare the result with the straight
forward expansion (5.12) obtained directly from the differential equation. To 
this end, we expand the exponential and circular functions in the exact solution 
separately. Using Taylor series, we have 

e-et = l . e t + l E2T2 _ 1 e 3 , 3 + . .. = £ 1 (-€t)n (5.19) 
2! 3! „ r 0 «! 

To expand the circular function, we first expand the radical, using the binomial 
theorem, that is, 

V i ^ p - = ( i - e 2 y/ * = i - j e 2 + i i l t i > E 4 _ ( i ) H ) H ) e < + . . . 

2 21 3! 

= 1 - ^ e 2 - | e 4 + • • • (5.20) 

Then, 
cos ( V l - e 2 t + 0) = cos [t + 0 - \e2t - ± e 4 f + • • •] 

= cos {t + 0) cos (\e2t + | e 4 f + •••) + sin (t + 0) sin (^e2f + |e 4 f + • • •) 

But 

cos5 = l - - S 2 + - 6 4 + - - - = T K > (5.21) 
2! 4! „ 4 - 0 (2/1)! V ' 

i i °° m y 1 * ' a 2 * - 1 

sin6 = 5 - - 6 3 + - 6 s + - - = V ^ (5.22) 
3! 5! ^ ( 2 « - l ) ! K } 

Hence, to 0 ( e 4 ) 

c o s ( v T : r e T r + 0) = cos(r + 0) [1 - j ( j e 2 / + • • - ) 2 ] 

+ sin (t + 0) \\e2t + \e*t + •••]+•• • 

- ; ( I J c V ) c o s (/ » 0) I ( J r 7 / l Jr"/)sit i ( M 0) I 

Therefore. 
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(n - l)th term n"-*™ , v . , , / 2n - 3\ 

Figure 5-2. Approximation of an exponential function by a finite number of terms in a 
Taylor series. 

cos ( V I " e 2 t + B) = cos (r + 0 ) + ^e 2 f sin (f + 0 ) 

+ |e 4 [ r sin(f + 0 ) - f2 cos ( f + 0 ) ] + •• • (5.23) 

To compare with (5.12), we need the expansion of (5.18)toO(e 2 ) . Substituting 
for the exponential and circular functions from (5.19) and (5.23) into (5.18) 
and keeping terms up to 0(e2), we obtain 

u = a(\ - et + A e2f2 + • • •) [cos (t + 0 ) + \ e2t sin (t + 8) + • • • ] = a cos (t + 0 ) 

- eat cos (t + 0 ) + i e2a [r 2 cos (f + j3) + t sin ( f + 0 ) ] + • • • (5.24) 

in agreement with (5.12) obtained directly from the differential equation. 
The above development shows that, in arriving at the straightforward expansion, 

we had to expand the exponential function as in (5.19) and the circular function 
as in (5.23). Using the ratio test in (5.19), we have 

wthterm (~et)n(n~l)\ , -et ^ 
lim ~ = lim ———:— = lim — = 0 

n-*«>(«- l)th term n->°° nl(-et) n n 

Hence, the series (5.19) converges for all values of et. However, Figure 5-2 shows 
that exp (~et) cannot be approximated uniformly by a finite number of terms in 
the series for all values of et. Therefore, any expansion procedure that is based 
on approximating exp (-et) by a finite number of terms in a series expansion in 
et is doomed to fail for large t. 

In expanding the circular function, we had to use the three expansions (5.20) 
through (5.22). Using the ratio test for the series (5.20), we have 

B t h t e r m - ( 4 ) H ) H ) - f^)(-.*r* '- . 
hm — = lim 
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Figure 5-3. 
series. 

Approximation of a cosine function by a finite number of terms in a Taylor 

= lim — " = e 
2n + 2 

Hence, (5.20) converges for all e 2 < 1. Thus, the expansion (5.20) is uniform for 
small e. Using the ratio test for the series (5.21), we have 

lim 
nth term 

= lim 
(-\)n 52n (2n~2)\ -5 ' 

n - ~ ( « - l)thterm « — (2n)\ (-1) 
- hm 

n - » ~ 2n(2n - 1) 
= 0 

Hence, the series (5.21) converges for all values of 5. However, Figure 5-3 
shows that cos 6 cannot be approximated uniformly by a finite number of terms 
for all values of 5. Similarly, one can show that sin 5 cannot be approximated 
uniformly by a finite number of terms for all values of 5. Therefore, any expan
sion that is based on approximating cos 6 and/or sin 6 by a finite number of 
terms in a series expansion in 5 is doomed to fail for large 6. 

In summary, the failure of the straightforward expansion for large t is due to 
the expansion of exp (- et) and cos {\J\ - e2 t + 8) in powers of e. We note that 
the straightforward expansion (5.23) forces the frequency to be unity, which is 
independent of the damping. In fact, the presence of the damping changes the 
frequency from 1 to y/1 - e2. Thus, any expansion procedure that does not 
account for the dependence of the frequency on e will fail for large /. Next, we 
show that the Lindstedt-Poincare' technique may lead to the trivial solution. 

5.3. The Lindstedt-Poincare Technique 

To account for the fact that the frequency is a function of e, we let 7 = cot in 
(5.2) and obtain 



c o V + 2 eoju' + u = 0 (5.25) 

where the prime indicates the derivative with respect to r. Next, we try expand
ing u and co in powers of e, that is, 

u = UQ(T) + eu, ( r ) + e*i/2(7-) + • • • (5.26) 

co = 1 + eco, + e2co2 + • • • (5.27) 

Note that the first term in (5.27) is unity, which is the unperturbed (undamped) 
frequency. Substituting (5.26) and (5.27) into (5.25) gives 

(1 + eco, + e2co2 + • • - ) 2 ( «o + + * 2 « 2 +*•• ) + 2e(l + e c o i + e2co2 + - •) 

• (m'0 + ew', + e2w2
 + ' • ' ) + "o + €«i + e2u2 + • • • - 0 

Expanding for small e and collecting coefficients of equal powers of e, we obtain 

w0' + w0 + e[u'i + M t + 2cO|U0' + 2w0] 

+ e 2 [u'i + «2 + 2co2w'o + <*>Wo + 2coi«',' + 2co,Mo + 2«', J + • • • = 0 

Equating coefficients of like powers of e yields the following equations that can 
be solved sequentially for u0, and u 2 : 

« o + w 0 = 0 (5.28) 

«V + " i = - 2 c o 1 « o - 2u0 (529) 

" 2 + «2 = -2co2«o " w f «o " 2coju',' - 2coiti0 - 2w\ (530 ) 

The general solution of (5.28) can be written as 

w o = a c o s ( r + 0) (5.31) 

where a and 0 are constants. Then, (5.29) becomes 

u" + ux = 2aco! cos (r + 0) + 2a sin (r + 0) (5.32) 

To eliminate the secular terms from the particular solution for ux, we need 
to annihilate the right-hand side of (5.32). Since r is a variable, this condition 
demands that each of the coefficients of sin (r + 0) and cos (T + 0) must vanish 
independently. That is, 

2aco, = 0 and a = 0 (533 ) 

Hence, (5.32) becomes 

u',' + U ! = 0 (5.34) 

Equations (5.33) cannot be satisfied simultaneously unless <z = 0. But if a-0, 
UQ=0 according to (5.31), then ux = 0 if the homogeneous solution is not 
included. Substituting for u0 = 0 into (530 ) yields 



U2 + U2 = 0 (535 ) 

whose particular solution is u2 - 0. Thus, we have ended up with the trivial 
solution. 

Had we included the homogeneous solution of (5 34 ) , we would have obtained 

ux = ax cos(r + 0 i ) ( 536 ) 

where ai and 0, are arbitrary constants. Then, (5.35) would have been replaced by 

u2 + u2 = 2uxax cos (r + 0, ) + 2a, sin (T + 0 , ) (5.37) 

Again, the condition for the ehmination of secular terms demands that a, = 0 . 
Consequently, only the trivial solution is obtained. 

The above development shows that the Lindstedt-Poincare* technique leads to 
the trivial solution only. Similarly, the method of renormalization yields the 
trivial solution of this problem only. The reason for the failure of these tech
niques to yield a uniform nontrivial solution is our insistence on a uniform solu
tion having a constant amplitude as in (531) . Since the amplitude is a exp(-er) 
according to the exact solution (5.18), the only constant-amplitude uniform 
solution is the one attained after a long time (i.e., steady state). Therefore, 
although the Lindstedt-Poincare* technique and the method of renormalization 
are effective in determining periodic solutions, they are incapable of detennining 
transient responses. 

In this example, this shortcoming of the Lindstedt-Poincare* technique and the 
method of renormalization can be remedied if one permits the u>„ to be com
plex. To show this, we express the solution of (5.28) in the complex form 

u0=AeiT +Ae~iT (538 ) 

where A is a complex constant. Then, (5.29) becomes 

u" + ux = 2(to, - i)AeiT + cc (539 ) 

Eliminating the terms that produce secular terms from (5.39), we obtain co, = i 
and (539 ) reduces to (534) . Hence, ux = 0 . Substituting for u0, ux, and co, 
into (530 ) gives 

u2 +u2= (2OJ2 + \)AeiT + cc (5.40) 

The condition for the elimination of secular terms leads to co2 = - \ , and hence 
« 2 = 0. Therefore, 

T = oot = ( 1 +/e- j e 2 +• • )t (5.41) 

and 

u = A exp [i(l + ie - \e2 + • • )t] + cc 

= A exp (-et) exp - \e2)t] + cc + • • • (5.42) 
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5.4. The Method of Multiple Scales 

Using (5.20), we rewrite (5.18) as 

u = ae'€t cos (t + 0 - \e2t - \e*t + • • •) (5.44) 

Thus, w(r; e) = u(t, et, e2t, e4r, • • •) and this problem is well-suited for the appli
cation of the method of multiple scales. To determine a second-order expansion, 
we need only the three scales T0 = t, Tx = et, and T2 = e2t. Then, using the chain 
rule we transform the time derivatives according to (4.93) and (4.94). However, 
here we streamline the notation and write 

d 

— = £>0 + e£>, + e2Z>2 + • • • (5.45a) 

d2 

•^ = (D0 + eDl+e2D2+-)2 

= Dl + 2eD0Dx + e2(2D0D2 +Z>2) + • • • (5.45b) 

where 

(5.46) 

Then, (5.2) becomes 

[Dl + 2eD0Dt + e2(2D0D2 + D\) + • • • ] « + 2e(D0 + eDx + e2D2 + • • > / + « = 0 

(5.47) 

Thus, the original ordinary-differential equation (5.2) is transformed into the 
partial-differential equation (5.47) 

We seek a solution for (5.47) in powers of e in the form 

u = u0(T0, r „ 7-2) + eul(T0, T l f T2) + e2u2(T0, Tx, T2) + --- (5.48) 

Substituting (5.48) into (5.47) and collecting coefficients of equal powers of 
e, we have 

Letting A = \a exp (*0), where a and 0 are real, we rewrite (5.42) as 

u = ae~et cos [(1 - \e2)t + 0 + • • •] (5.43) 

in agreement with ihc exact solution (5.18) to 0(e2). 
We should note that the success of the preceding modification of the Lindstedt-

Poincare' technique is accidental. In fact, this modified technique may lead to 
an erroneous solution, as shown in Section 6.2. 
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Z>o"o + "o + e[Dlux + u, + 2D 0 Z> , m 0 + 2D0u0] + e2[Dlu7 + u2 + 2D0D2u0 

+ D]u0 +2D0Dlul +2£> 0 « i + 2Dxu0] + • • • = 0 (5.49) 

Equating each of the coefficients o f e t o zero yields 

£o"o + " o = 0 (5.50) 

Dlux + ux = - 2 £ ) 0 D i U 0 - 2Z>o«o (5.51) 

D\u2 + u2 = -2D0D2u0 - D\u0 - 2D0Dlu1 - 2D0ux - 2Dxu0 (5.52) 

As discussed in Section 4.5, it is convenient to express the solution of (5.50) 
in the complex form 

u0 =A(Tx,T2)eiT* +A(Tx,T2)e-iT<> (5.53) 

Then, (5.51) becomes 

£>o"i + « i = -2i(DxA +A)eiT» + cc (5.54) 

where cc stands for the complex conjugate of the preceding terms; in this case, 
it stands for 2i(DxA +/1) exp ( - iT 0 ) . Thus, this notation serves to display long 
expressions efficiently, and hence, i t is used frequently. 

The condition for the elimination o f secular terms from ux demands the 
vanishing of each of the coefficients of e x p ( i T 0 ) and exp ( - i T 0 ) independently. 
The vanishing of the coefficient of exp ( i T 0 ) yields 

DXA +A=0 (5.55) 

The vanishing of the coefficient of exp (-/T0) yields the complex conjugate of 
(5.55), and hence, it does not yield a new condition. Once (5.55) is satisfied, 
its complex conjugate is automatically satisfied. With (5.55), (5.54) becomes 

Dlux = 0 (5.56) 

In keeping up with our approach of not including the homogeneous solutions 
except in the lowest-order problem, we write the solution of (5.56) as 

tt!=0 (5.57) 

because (5.56) is homogeneous. T h e solution of (5.55) is 

A =B(T2)e-T> (5.58) 

where B(T2), the constant of i n t e g r a t i o n as far as the derivative with respect 
to Tx is concerned, is a function of T2, and it is determined by eliminating the 
terms that produce secular terms in the second-order problem, the problem 
for u2. 

Substituting for u0 and ux into (5.52), w e have 

Dlu2 +u2= -(2iD2A + DU + 2DxA)eiT° + cc (5.59) 
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The condition for the elimination of secular terms from u2 demands the vanish
ing of the coefficient of exp (/T0). That is, 

2iD2A + D\A + ID, A = 0 (5.60) 

Substituting for A from (5.58) into (5.60) yields 

2iD2#e-~r> - Be~T> = 0 

or 

2iD2B-B = 0 (5.61) 

whose solution is 
£ = c e - 0 / 2 ) ' T , ( 5 6 2 ) 

where c is a complex constant because B is a function of T2 only. 
Putting B in (5.58), we have 

A=ce-Tl-{i/2)rrJ ( 5 6 3 ) 

Then, (5.5 3) becomes 

M q _ c c - r . w i r 0 - o / 2 ) r j + ce~T* -«[ 7 - 0 - 0 / 2 ) 7 , ] 

Expressing c in the polar form y a exp (/|3), we rewrite u0 as 

M o ^ ^ - ^ / i r . - o ^ r ^ / J i + | < M f - r l e - * | r 0 - ( i / a ) r , . « 

- | a e ~ r ' { e ' l r ° " 0 / 2 ) r 3 + ^ + e " f " , 7 , o " ( , / 2 ) r * + ' J l } 

= <7<Tr' cos (7"0 - -} T2 + 0) 

In terms of the original variable, u0 becomes 

u0 =ae~etcos(t- |e 2 f + /3) (5.64) 

Substituting for u0 and u t from (5.64) and (5.57) into (5.48), we obtain 

u = ae~€t cos (r - \e2/ + 0) + 0 ( e 2 ) (5.65) 

which is uniform and in agreement with (5.44) to 0 ( e 2 ) . Therefore, the method 
of multiple scales is effective in determining the transient response as well as 
determining the approximation to the frequency of the system. 

5.5. The Method of Averaging 

When e = 0 , the solution of (5.2) can be written as 

« = a cos (t + 0) (5.66) 

where a and 0 are constants. Differentiating (5.66) with respect to / yields 

u = -a sin (t + 0) (5.67) 



When e=£0, we still represent the solution by (5.66) subject to the constraint 
(5.67) but with time varying a and 0. 

Since a = a(t) and 0 = 0 ( f ) , differentiating (5.66) with respect to t gives 

u = a cos (f + 0 ) - a(l + 0 ) sin (f + 0 ) 

= -a sin (f + 0 ) + a cos (f + 0 ) - a(5 sin (f + 0 ) (5.68) 

Comparing (5.67) and (5.68), we conclude that 

a c o s ( f + 0 ) - a 0 s i n ( f + 0 ) = O (5.69) 

Differentiating (5.67) with respect to t gives 

u = -a sin (f + B) - a(\ +13) cos (f + B) (5.70) 

Substituting (5.66), (5.67), and (5.70) into (5.2), we obtain 

-d sin (t + B) - a cos (t + 0 ) - a/3 cos (/ + B) - 2ea sin (f + 0 ) + a cos (t + B) = 0 

or 

a sin (r + 0 ) + a0 cos (f + 0 ) = -lea sm (r + 0 ) (5.71) 

Multiplying (5.69) by cos (t + 0 ) and (5.71) by sin ( f + 0 ) , adding the results, 
and noting that sin2 6 + cos2 6 - 1, we obtain 

a = -lea sin2 (f + 0 ) = -ea + ea cos (2r + 20) (5.72) 

Substituting for a into (5.69) gives 

-lea sin2 (f + 0 ) cos (t + 0 ) - a/3 sin (f + 0 ) = 0 (5.73) 

When a $ 0, it follows from (5.73) that 

0 = -le sin (f + 0 ) cos (t + 0 ) = -e sin (2f + 20) (5.74) 

For small e, we have two approaches as discussed in Section 4.6. First, we can 
average (5.72) and (5.74) over the period of the circular functions on the right-
hand sides of these equations to determine a first approximation. Second, we 
can keep only the slowly varying terms in (5.72) and (5.74). Applying the latter 
approach, we obtain to the first approximation 

d = -ea (5.75) 

0 = 0 (5.76) 

The solutions of (5.75) and (5.76) are 

a = a0e~" and 0 - 0 O (5.77) 

where a0 and 0 O are constants. Then, it follows from (5.66) that 

u = a0e~e' cos (r + 0 O ) (5.78) 
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which is in agreement with (5.44) up to 0 ( e ) . Therefore, the first approximation 
of the method of averaging is effective in determining the transient response, 
but it is incapable of determining the corrections to the frequency, which are 
o f higher order than the first. Thus, to determine these corrections, one needs 
to carry out the solutions of (5.72) and (5.74) to higher order; this is accom
plished by using the generalized method of averaging (Section 7.6). 

Exercises 

5.1. Consider the equation 

ii + 2enii + u + eu3 = 0 e « 1 

Use the methods of multiple scales and averaging to determine a first-order 
uniform expansion for u. 

5.2. Consider the equation 

ii + OJQU + eu3 ~ 0 e « 1 

Use the methods of multiple scales and averaging to determine a first-order 
uniform expansion for u. 

5.3. Consider the following equation: 

ii + OJQU + 2efiu2u + eu3 = 0 

Show that to the first approximation 

u = a cos (coQt + B) + 0 ( e ) 

and determine the equations governing a and B by using the methods of multiple 
scales and averaging. 

5.4. Use the methods of multiple scales and averaging to determine a first-order 
uniform expansion for the general solution of 

, n 4 sin2 0 • 
6 + co sin 6 + —0 = 0 

1 +4(1 - cos0) 

for small but finite 0. 

5.5. Consider the equation 

ti + coo« + 7 = 0 
1 - u 

Determine a first-order uniform expansion for small u. 

5.6. Use the methods of multiple scales and averaging to determine a first-order 
uniform expansion for 

ii + u + eu5 = 0 e « 1 



CHAPTER 6 

Self-Excited Oscillators 

In contrast with the preceding chapter, which deals with systems possessing posi
tive damping, we consider in this chapter systems with negative damping. Specif
ically, we consider self-excited systems having a single degree of freedom. Such 
systems are governed by equations of the form 

d2u* I du*\du* 

where u is a positive parameter and/* is positive for small u*. 
To simplify the algebra, we consider the following special equation: 

m — - r + £w* = A£ 1 - a ) i (6.2) 
dt*2 \dt*J jdt* v ' 

where a is positive. This equation is usually called the Rayleigh equation. As 
discussed earlier, we need to express (6.2) in dimensionless form before carrying 
out the analysis. To this end, we use a characteristic displacement u* and the 
linear natural frequency co0 = y/k/m\ as reference quantities, and define the 
following dimensionless variables without the asterisks: 

u=— t = t*\/klm 

Then, (6.2) becomes 

( ctu*2k .,\ . 
X~~~m~~ I 

where e-nfy/km. We choose u* so that au*2k = \ m and (6.2) can be put in 
the standard form 

u + u = e(u - A « 3 ) (6.4) 

Differentiating (6.4) with respect to t gives 

147 



u + u = e(u - u2u) ( 6 . 5 ) 

If we let u — u, we can rewrite ( 6 . 5 ) in the form 

v + v = e(l - v2)v ( 6 . 6 ) 

This equation is usually called the van der Pol equation. 
In this chapter, we describe techniques of determining approximate solutions 

of ( 6 . 4 ) , and hence, of ( 6 . 6 ) for small e. We start by determining a straightfor
ward expansion and discussing its uniformity. We show that neither the Lindstedt-
Poincare* technique nor the method of renormalization is capable of yielding the 
transient response. Then, we show that the methods of multiple scales and aver
aging can yield the transient response. 

6.1. The Straightforward Expansion 

We seek a first-order straightforward expansion for the solution of ( 6 . 4 ) in the 
form 

Substituting ( 6 . 7 ) into ( 6 . 4 ) yields 

UQ + eiiy + • • • + uQ + eui + • • • = e(ti0 + ew, + • • •) - | e(u0 + eux + • • - ) 3 ( 6 . 8 ) 

Using the binomial expansion theorem and keeping terms up to 0 ( e ) in ( 6 . 8 ) , 

we have 

u(t;e) = u0(t) + eux(t) + • • • ( 6 . 7 ) 

u 0 + w0 + e(ii, + « , ) + • • • = e(zi0 - \ u%) + • • • 

Equating coefficients of like powers of e on both sides of ( 6 . 9 ) gives 

( 6 . 9 ) 

u0 + u0=0 

which can be solved sequentially for u0 and w,. 
The general solution of ( 6 . 1 0 ) can be written as 

u0 = a cos (/ + 0 ) 

where a and B are constants. Then, ( 6 . 1 1 ) becomes 

ii, +w, =-asin (t + B)+^a3 sin3 (t + B) 

Using the trigonometric identity (A 16) 

( 6 . 1 0 ) 

( 6 - 1 1 ) 

( 6 . 1 2 ) 

( 6 . 1 3 ) 

sin3 6 = f sin 6 - i sin 30 

we rewrite ( 6 . 1 3 ) as 

" i + " i = ( | a 2 - l )as in(/ + 0 ) - f 2 c 3 s in(3f + 30) ( 6 . 1 4 ) 



Since (6.14) is linear, a particular solution can be obtained as the sum of two 
particular solutions corresponding to the two inhomogeneous terms. That is, a 
particular solution of (6.14) can be obtained as the sum of any particular solu
tion of 

uP + uPfiia2- l )as in (/ + 0) 

and any particular solution of 

" i 2 ) + " i 2 ) = - n * 3 s i n ( 3 / + 30) 

A particular solution of (6.15) is (B81 and B82) 

« ^ = } ( 1 - ia2)at cos (t + 0) 

whereas a particular solution of (6.16) is (B68 and B69) 

M £ = ^ t f 3 s i n ( 3 r + 30) 

Hence, 

% = uty + ufp = \ (1 - i a2)at cos (t + 0) + ±a3 sin (3/ + 30) (6.19) 

Since the solution of the homogeneous equation (6.14) is not needed if a and 
0 are considered functions of e according to Section 4.1, the solution of (6.14) 
is given by (6.19). Substituting (6.12) and (6.19) into (6.7), we obtain 

u =a cos (f + 0) + e[{ (1 - \ a2)at cos (f + 0) + ^ a3 sin (3f + 30)] + • • • (620 ) 

This straightforward expansion is nonuniform for t > 6>(e_ 1 ) because the correc
tion term is the order or larger than the first term owing to the presence of the 
mixed-secular term. This nonuniformity is illustrated in Figure 6-1, which com
pares (6.20) with solutions obtained by numerically integrating (6.4). Initially, 
the straightforward and numerical solutions are in agreement. But as t increases, 
the analytical solution deviates more and more from the numerical solution, 
which approaches a periodic solution having an amplitude of approximately 
two, irrespective of the initial conditions. The periodic solution approached by 
the numerical solution is called a limit cycle. Figure 6-2 shows the numerical 
solutions in the phase plane (uv plane, where v = u) for several values of e and 
initial conditions. When e is small, the limit cycle has an amplitude of approxi
mately two, irrespective of the initial conditions. 

We should note that the mixed-secular term in (6.20) disappears if 

( l - | a 2 ) a = 0 (6.21) 

Excluding the trivial case a = 0, (6.21) is satisfied and the mixed-secular term 
disappears f rom (6.20) it a ~ * 2. If the amplitude i s defined to be posit ive, the 
mixed-secular term disappears from (6.20) if a = 2 and (6.20) becomes 

u = 2 cos (t + 0) + e sin (3/ + 30) + • • • (6.22) 

which is periodic and to first-order has an amplitude of 2. This is the limit cycle. 

(6.15) 

(6.16) 

(6.17) 

(6.18) 



u 

(0) 

(b) 

Figure 6· 1. Comparison of straightforward expansion (0) with exact solution (b) for u(O) '= 

0.5, u{O) ::: 0, and e::: 0.1. 

u 
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(0) (0) 

f r - J u 
u 
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Figure 6-2. Phase planes for Rayleigh's equation: (0) e::: 0.01; (b) e = 0.1; (c) e = 1; (d) 
e = 10.0. 
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6.2. The Method o f Renormalization 

In this section, we apply the method of renormalization to (6.20). Thus, we let 

T = cof = ( 1 + e c o , + • • • ) ' (6.23) 

Hence, 

t = r ( l + eco, + • - ) _ 1 = T - eco,r + • • • (6.24) 

Substituting (6.24) into (6.20), we have 

u - a cos (r + B - eco,r +•••) + e [ | (1 - \ a2)a(r - eco,T + • • •) 

• cos (T + 0 - eco,r +•••) + ^ a3 sin (3T + 30 - 3eco,r + • • • ) ] + • • • (6.25) 

Using Taylor series expansions such as those in (4.86), we rewrite (6.25) as 

u = a cos (r + 0) + e[co,ar sin (T + 0 ) + | (1 - | a 2 )ar cos (T + 0) 

+ i a 3 sin (3r + 30)] + • • • (6.26) 

If co, is real, the elmination of the secular terms from (6.26) demands that 

co,a = 0 (6.27) 

(1 - | a2)a = 0 (6.28) 

Since a 0 for a nontrivial solution, it follows from (6.27) and (6.28) that 
co, = 0 and a = 2. (The case a = - 2 can be disregarded if the amplitude is defined 
to be positive.) Then, it follows from (6.23) that r = t + 0 ( e 2 ) and from (6.26) 
that 

u - 2 cos ( f + 0) + i e sin (3f + 30) + • • • (6.29) 

which is the limit cycle. 
The question arises whether permitting the co„ to be complex will lead to a 

uniform expansion as in Section 5.3. To answer this question, we express (6.26) 
in complex form. To this end, we note that 

cos 6 = | (ei0 + e~id) sin d = - ~ ( e i e - e~id) 

Then, we rewrite (6.26) as 

I [1 (1 - > 2 ) - / c o j a r e ' ' ^ - ^a>e***» 

+ CC+ - ( 630 ) 

Eliminating the secular term in (6.30) demands that 

co, —1/(1-1 * * ) ( 631 ) 



Then, 

t< = J ae*T+*> + «: + ••• (632) 
It follows from (6.23) and (631) that 

T = t - \ ic ( l - i a7)t + • • • (633) 
Hence, (6.32) becomes 

u = | a exp {/ [r - | ie ( l - J a 2 ) / + p+ ••-]} +cc+ •• • 

= | a exp e(l - J a 2 ) f ] exp [/(f + 0)] + cc + • • • 

Therefore, 

u = a exp e(l - \ a2)t] cos (/ + /3) + • • • (6.34) 
Equation (6.34) shows that m-*° ° as r -* ° ° if l<zl<2 and that «-+0 as 
t -*<*> if lal > 2. This result is erroneous because Figures 6-1 and 6-2 show that 
the numerical solutions of (6.4) approach approximately two, irrespective of the 
initial conditions, and hence, the value of a. Hence, the modification of the 
Lindstedt-Poincare' technique or the method of renormalization by allowing the 
co„ to be complex may lead to erroneous results as in this case. Therefore, one 
should avoid applying either of these techniques to determine other than peri
odic solutions. 

6.3. The Method of Multiple Scales 

To determine a uniform first-order expansion for the solution of (6.4) by us
ing the method of multiple scales, we introduce the scales T0 = t and 7", =et. 
Then, the derivatives with respect to / transform into 

^ = £>o + e£», + • • 
at 

d1 

— r = D 2
) + 2eZ)o£>i + • • • 

at 

whereD n - 9/9T„. Hence, (6.4) becomes 

D\u + leDoDiU + u - e[D0u - \ (D0u)3] + • • • (6.35) 
We seek a solution o f (6 .35 ) in the form 

u u0(T0, 7",) i < » < , ( " / ' „ , / ' , ) » • (6 .36 ) 

Substituting (6.36) into (6.35) and equating the coefficients of e° and e on both 
sides, we obtain 

Dluo+uo=0 (6.37) 



DQU\ + w, = -2D0Z) ,Wo + D0u0 - % (D0u0)3 (6.38) 

As before, the general solution of (6.37) is expressed in the following complex 
form: 

w0 = A(T1)eiT'> +A(T1)e-iT'> (639) 

Then, (6.38) becomes 

Dlux + w, = -2iA'e'r<> + 2/Z ' e - , T ° + iAeiT° - L4e-iT<> - ± (L4e, T» - / J e ' , T ° ) 3 

or 

Dluy + ux =-i(2A' - A +A2A)e,To + ± iA3e3iT° + cc (6.40) 

Eliminating the secular terms from w, demands that 

2A'-A+A2A=0 (6.41) 

As before, we express A in the polar form 

A = \aeip . (6.42) 

where a and 0 are real functions of Tx. Then, (6.39) becomes 

tto = | f l e ' ( T o ^ ) + ^ a e - / ( r o + 0) 

or 

w0 =tf cos (7*0 + 0 ) (6.43) 

Substituting (6.42) into (6.41) gives 

a'e* + iatfe* - \ ae* + ± a3e* = 0 

Dividing by the factor exp (iff) and separating real and imaginary parts, we obtain 

a' = \a-\a3 (6.44) 

0 ' = O (6.45) 

The solution of (6.45) is 

6 = 0 O = constant (6.46) 

The solution of (6.44) can be obtained by separation of variables, that is, 

Sda Sda 

d T - = — (6.47) 
1 4a- a3 a(2 - a)(2 + a) V 

Expressing lh « rigid luijul side o f (0 .47 ) lit piiitlul IiiuIIdiis, wr obhiiu 

„ 2da da da 
dTx= + - — (6.48) 

a 2-a 2+a 

Integrating (6.48) yields 
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Tt + c = 2 log a - log 12 - a I - log (2 + a) 

or 

7', + c = log 
l 4 - a 2 l 

where c is a constant. Hence, 

a2 

4-a2 

Solving (6.49) for a2 gives 

= e T t + c = e « + c ( 6 4 9 ) 

a2 = 4 e X p ( 6 ' * c ) = 1 (6.50) 

1 + exp (et + c) 1 + exp (- et - c) 

Substituting (6.46) and (6.50) into (6.43) and setting T0 = t, we have 

u0 = 2[1 + e~et-c) ~1'2 cos (/ + ft) (6.51) 

Substituting (6.51) into (6.36), we obtain the following first-order expansion for 
the general solution of (6.4): 

u = 2 [1 + exp (- et - c)]_1/2 cos (t + 0 O ) + • • • (6.52) 

Using the initial conditions 

u(0)=a0 u(0) = 0 (6.53) 

we find from (6.52) that 

fl0=2[l +e'c]~112 cos(i0 (654) 

0 = - 2 [ l + < T C ] _ 1 / 2 sin 0 O + 0 ( e ) (655) 

It follows from (6.55) that sin /3„ = 0 ( e ) or 0 O = 0 + 0 ( e ) . Then, it follows from 
(6.54) that 

a2
0 = 4[l +e-c}'1 (6.56) 

Solving (6.56) for exp (~c) gives 

<TC=4-1 (6-57) 

Therefore, (6.52) becomes 

l + / 4 a _ r l / 2 

Equation (6.58) shows that 

w = 2|l 1̂  e ' a c o s r + - - (6.58) 

w -+ 2 cos / + 0 ( e ) (6.59) 
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lb) 

Figure 6-3. Comparison of the approximate solution (b) with the exact solution (a) for 
u(0) = 0.5, « ( 0 ) » 0, and e « 0.1. 

as t -*• °°, irrespective of the value of a0 as long as it is different from zero. This 
result is in agreement with the numerical solutions in Figures 6-1 and 6-3. Fig
ure 6-3 shows that ( 638 ) is in good agreement with the numerical solutions 
of (6.4). 

Equation (6.58) clearly shows that u does not have the form a cos (t + B) 
where a is an exponential function of time. The Lindstedt-Poincare* technique 
and the method of renormalization, even when co is complex, force a to be an 
exponential function. Thus, these approaches cannot be expected to yield a 
good approximation of the solution. On the other hand, with the method of 
multiple scales, changing the original ordinary-differential equation into a system 
of partial-differential equations permits enough generality in the form of the 
solution to obtain an excellent approximation. 

6.4. The Method of Averaging 

As in Sections 4.6 and 5.5, to apply the method of averaging to (6.4), we need 
to use the method of variation of parameters and introduce the transformation 

« ( r ; e) = a{t) cos [/ + B(t)] (6.60) 

u(r,e) = -ait)sin [/ + £(/)] (6.61) 

As before, we differentiate (6 .60) with respect to / and obtain 
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u = -a sin (t + 0) + # cos (t + 0) - a/3 sin (f + 0) (6.62) 

It follows from (6.61) and (6.62) that 

a cos (t +0) - a0 sin (t + 0) = 0 (6.63) 

Differentiating (6.61) with respect to t gives 

« = - a cos (f + 0) - a sin (r + 0) - a(3 cos (t + 0) (6.64) 

Substituting (6.60), (6.61), and (6.64) into (6.4) yields 

a sin (t + 0) + a/3 cos (t + 0) = eo sin (r + 0) - ± ea3 sin3 (r + 0) (6.65) 

Solving (6.63) and (6.65) for a and 0 gives the following variational equations: 

a = e (a sin (t + 0) - | a3 sin3 (f + 0)] sin (t + 0) (6.66) 

a0 = e [a sin (f + 0) - ^ a3 sin3 (f + 0)] cos (/ + 0) (6.67) 

Using the trigonometric identities 

sin2 0 ~ \ - \ cos 20 

sin4 0 = | (cos 4 0 - 4 cos 20 + 3) 

sin 0 cos 0 = j sin 20 

sin3 0 cos 0 = I (2 sin 20 - sin 40) 

We rewrite (6.66) and (6.67) as 

a = ea[\ (1 - £ a 2 ) - \ (1 - | a 2 ) cos (2r + 20) - ^ a 2 cos (At + 40)] (6.68) 

£ = e[j (1 - £ a7) sin (2/ + 20) + ^ a 2 sin (At + 40)] (6.69) 

The assumption a ^ 0 is used in arriving at (6.69), To the first approximation, 
we keep only the slowly varying terms, that is, the terms independent of the 
circular functions. Hence, to the first approximation, (6.68) and (6.69) are re
placed by the following averaged equations: 

d = ± e a ( l - ±a7) (6.70) 

0 = 0 (6.71) 

which are in full agreement with (6.44) and (6.45) obtained by using the method 
of multiple scales. 

Figure 6-4 compares the solutions of the variational equations (6 .68 ) and 
(6.69) with the solutions of the averaged equation (6.70) for the initial conditions 

a(0)=a0 0(0) = 0 (6.72) 

It is clear that the solutions of the averaged equations are averages of the solu
tions of the variational equations. 



->• t 
(0) 

( b ) 

Figure 6-4. Comparison of solutions of the variational equations (6.68) and (6.69) with 
those of the averaged equation (6.70) for e = 0.3: (a) a(0) = 0.5, 0(0) - 0; (b) a(0) - 4.0, 
0(0) = 0. 

Exercises 

6.1. Consider van der Pol's equation 

u + u = e( l - u2)u 

(a) Determine two terms in the straightforward expansion and discuss its 
uniformity. 

(b) Use the method of renormalization to render the straightforward expan
sion uniformly valid. 

(c) Use the methods of multiple scales and averaging to determine a first-
order uniform expansion. 

( d ) Compare the results in ( b ) and ( c ) and indicate the limitations of thr 
method of rcnormali/.ation. 

6.2. Use the methods of multiple scales and averaging to determine a first-
order uniform expansion including the transient response of the solution of 

ii + colu = e[u - ti3 + u2u] e « l 
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6.3. Consider the equation 

x + x + x - \ (x - \x l)5(x - x0) ~ 0 
wlicie x0 is a constant and 6 is the Dirac delta function. Determine a first-order 
uniform expansion for small but finite x. 

6.4. Consider the equations 

u + COQU = 2e{ ( l - v)u - vu] 

0 + u = u2 

Determine a first-order uniform expansion for u and v. 

6.5. Use the methods o f averaging and multiple scales to determine a first-
order uniform expansion for 

u + u = e(l - u*)u 

when e « 1. 

6.6. Use the methods o f multiple scales and averaging to determine a first-
order uniform expansion for 

u + u - e( l - u2)u + eu3 = 0 

when e < < 1. 

Mohsen
Highlight



CHAPTER 7 

Systems with Quadratic and 
Cubic Nonlinearities 

We consider the free oscillations of a particle of mass m under the action of 
gravity and restrained by a nonlinear spring, as shown in Figure 7-1. The equa
tion of motion is 

md-^+f(x*) = mg (7.1) 

where g is the gravitational acceleration and f(x*) is the restraining force of the 
spring. We assume that/(x*) is a cubic function of x * , that is 

f(x*) = kxx* + k3x*3 (7.2) 

where kx > 0. Substituting (7.2) into (7.1) gives 

d2x* 
m 

dt*2 

+ ktx* + k3x*3 =mg (7.3) 

The equilibrium positions x* can be obtained from (7.3) by dropping the ac
celeration term. The result is 

kxx* + k3x*3 = mg (7.4) 

In this chapter, we investigate small oscillations about one of the equilibrium 
positions. To this end, we let 

x*=x* + u* (7.5) 

in (7.3) and obtain 

m + + u * ) + *3<X? + « * ) 3 = mg (7.6) 

Expanding the cubic term and using (7.4), we rewrite (7.6) as 

~ ~ + (kt + 3k3xf)u* + 3k3x*u*2 + k3u*3 = 0 (7.7) m 

i <o 



Figure 7-1. Mass restrained by a nonlinear spring in the presence of gravity force. 

As before, we introduce the following dimensionless quantities: 

where 

u = u */x* t = cot' 

co =V (& , + 3k3x*2)/m 

is the linear natural frequency, which is assumed to be real. (We note that when 
the mass-spring system is oriented horizontally, the natural frequency is \/k1/m.) 
Then, (7.7) becomes 

u + u + 3au2 + ocu3 = 0 (7.8) 

where a = k3x*2/mco2. In what follows, we assume that ot = 0(l). In contrast 
with the Duffing equation, (7.8) contains a quadratic as well as cubic term. In
stead of (7.8), we consider a slightly more general equation, namely 

ii + u + a2u2 + a 3 u 3 = 0 (7.9) 

where a 2 and oc3 are constants. 
In the next section, we determine a second-order straightforward expansion 

to the solutions of (7.9) for small but finite amplitudes. We render this expan
sion uniform in Sections 7.2 and 7.3 by using the method of renormalization 
and the Lindstedt-Poincare technique. In Section 7.4, we determine a uniform 
second-order expansion by using the method of multiple scales. In Section 7.5, 
we show that the first approximation of the method of averaging yields an 
incomplete solution. In Section 7.6, we introduce the generalized method of 
averaging and obtain a uniform second-order expansion to (7.9). Finally, in Sec
tion 7.7, we introduce the Krylov-Bogoliubov-Mitropolsky technique. 

7.1. The Straightforward Expansion 

To carry out a straightforward expansion for small but finite amplitudes for 
(7.9), we need to introduce a small parameter because none appear explicitly in 
this equation. To this end, we seek an expansion in the form 

u = eu,(/) + €2u2(t) + e 3 u 3 ( 0 + • • • (7.10) 

where e is a small dimensionless parameter that is a measure of the amplitude of 



oscillation. It can be used as a bookkeeping or crutching device and set equal 
to unity if the amplitude is taken to be small as described below. 

Substituting (7.10) into (7.9) gives 

eux + e2u2 + e3ii3 + --' + eul+ e2u2 + e3u3 + • • • + a2(eut + e2u2 + e3u3 + • • )2 

+ a3 (eMi + e2u2 + e3u3 + • • )3 =0 (7.11) 

Using the binomial theorem to expand the terms in parentheses in (7.11) and 
keeping terms to 0(e3) only, we obtain 

e(w, + « i ) + e2(u2 + u2 + a2u2) + e3(u3 + u3 + 2a2M,w2 + a 3 w 3 ) + • • • = 0 

(7.12) 

Equating each of the coefficients of e to zero in (7.12) yields 

ul+ul-0 (7.13) 

i i 2 + M 2 = - a 2 w 2 (7.14) 

u3+u3=-2oc2ulu2-a3u3 (7-15) 

which can be solved sequentially for ux, w2, and u3. 
The general solution of (7.13) can be expressed as 

ux = f lcos( f + (7.16) 

where a and 0 are constants. Then, (7.14) becomes 

ii2+u2=- a2a2 cos2 (r + 0) = - \ a2a2 - \ cc2a2 cos (2r + 2/3) (7.17) 

As before, we do not include the solution of the homogeneous problem for 
u2. Moreover, a particular solution for (7.17) can be obtained as the sum of two 
particular solutions, one for each of the following equations: 

+ u(
2

1) =-\a2a2 (7.18) 

ii(
2

2) + u2
2) = -1 a 2 a 2 cos (21 + 2/3) (7.19) 

A particular solution of (7.18) is 

u%=-\«2a2 (7.20) 

whereas a particular solution of (7.19) is (B68 and B69) 

u{? = I a2a2 cos (21 + 20) (7.21) 

Hence, 

u2 = w2p + = " \ oc2a2 + I a2a2 cos (2r + 20) (7.22) 

Substituting (7.16) and (7.22) into (7.15) gives 

u3 + u3=- 2a2a cos (f + 0) [ - i a 2 a 2 + i a2a2 cos (2r + 20)] - a 3 a 3 cos" (/ + 0) 
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or 

" 3 + "a = ( f<*2 - |a 3 ) f l 3 cos (t + 0 ) - (i<x3 + £ajj)a3 cos (3r + 3/3) (7.23) 

Since (7.23) Is llncai, 

" 3 = 4 1
p

) + " ? p
) (7.24) 

where and are particular solutions of the following equations: 

" (
3 ° + = ( f at " | <*3)a3 cos (r + 0 ) (7.25) 

fi?} + " 3
2 ) — (J « 3 + i. a ' ) * 3 cos (3/ + 30) (7.26) 

It follows (B69 and B76) that 

» * } = ( n <*i " ! «3)a3/ sin (/ + 0 ) (7.27) = i (J <*3 + i a2.)*3
 cos (3* + 30) (7.28) 

Substituting (7.27) and (7.28) into (7.24) yields 

" 3 = ( f t <*! " I < * 3 ) * 3 ' sin (r + 0 ) + i (| a 3 + i a 2 ) * 3 cos (31 + 30) (7.29) 

Substituting (7.16), (7.22), and (7.29) into (7.10) yields the following third-
order [up to t9(e3)] straightforward expansion: 

u = ea cos (t + 0 ) + £ a 2 e V [cos (21 + 20) - 3] 

+ e V [ ( f t a 2
! - f a 3 ) / s i n ( f + /J) 

+ i (i «3-+ H) cos (31 + 30)] + • • • (7 3 0 ) 

We note that the dependence of u on e and a is in the combination ea. Thus, one 
can set e = 1 and consider a as the perturbation parameter. The straightforward 
expansion (7.30) breaks down for t >0(e~1a~1) because the second correction 
term is the same order or larger than the first correction term, owing to the 
presence of the mixed-secular term. Next, we use the method of renormalization 
to render (7.30) uniform. 

7.2. The Method of Renormalization 

As discussed in Sections 4.3 and 4.4, we can construct a uniform expansion 
for (7.9) either by applying the Lindstedt-Poincare technique to the differen
tial equation or by applying the method of renormalization to (730 ) . In either 
case, we introduce a transformation T = cot, where a? is the nonlinear frequency 
of (7.9). Moreover, we expand co in a power series of e with the first term being 
the linear frequency (in this case it is unity). Thus, we write 

co= 1+eco ,+e 2 c o 2 + • • (731 ) 
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appears at 0(e3) in (7.30). Then, we have 

t = (1 + eco, + e2co2 + • • -)'1T 
= (1 - (ecu, + e 2 c o 2 + • • • ) + (eco, + e 2 c o 2 + • • ) 2 ] r 

Keeping terms up to 0 ( e 2 ) gives 

t = T - eco,r + e2(co? - co2 )r + • • • (732) 

Substituting (7.32) into ( 730 ) yields 

u = ea cos [r + 8 - eco,r + e2(co] - C O 2 ) T + • • •] 

+ i a 2 e V {cos [2T + 2)3 - 2eco,T + 2e2(co2 - C O 2 ) T + • • • ] - 3} 

+ e V { ( f t a 2 - | a 3 ) [ r - eco,r + e2(co, - C O 2 ) T + • • •] sin [T + 8 - eco,r 
+ e2(co? - co2 )r + • • J + i (J a 3 + \ a\) cos [3r +3/3- 3eco,r 

+ 3e2(co? - C O 2 ) T + • • • ] } + • • • (733) 

Next, we expand (733 ) for small e keeping T fixed. To this end, we need to ex
pand the circular functions in (7.33). Using Taylor series, we obtain 

cos [T + 8 - eco,r + e2(co? - co2 )r + • • •] 

= cos ( T + B) + [eco,r - e2(co, - u>2)r] sin ( T + 8) 

- ~ [eco,r- e 2 (co2 - co2 )r + • • • ] 2 cos (r + 6) 

= cos (T + 8) + ecojT sin (T + 8) - e 2 [ (co 2 - C O 2 ) T sin (T + j3) 

+ |coV c o s ( t + /?)] + ••• (734) 

cos [2T + 2/3 - 2eco,7 + 2e2 (co2 - co2)r + • • ] 

= cos (2T + IB) + [2eco,T - 2e2 (co2 - C O 2 ) T ] sin (2T + 26) + • • • 

= cos (2T + 2/3) + 2eco,r sin (2T + 2/3) + • • • (735) 

sin [T + 8 - eco,r + e2 (co2 - co2 )r + • • • ] = sin (r + /3) + •• • (736) 

cos [3r + 3/3 - 3eco,r +3e 2 (co?- C O 2 ) T + • • • ] = cos (3r + 3/3) + • • • (737) 

Substituting (734 ) through (7.37) into (7.33) and keeping terms up to 0 ( e 3 ) 
only, we obtain 

u = ea cos (r + B) + e2[CO,<ZT sin (r + 8) + | a 2 a 2 cos (2r + 2/3) - \ a7a2] 

+ e 3 {- { C O ^ T 2 cos (T + 8) + [-^al - f c*3)a3 - a(co? - co 2 ) ] r sin (r + 0) 

+ I <*2co,a2r sin (2r + 28) + | (| a 3 + £ c^ ) * 3 cos (3T + 3/3)} + • • • (7.38) 

Eliminating the secular term i? 0(e2) demands that coi = 0 if a^O. Then, all 
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secular terms are eliminated at c9(e3) except one, which is eliminated if 

(f2al- |a 3 y+ «w 2 -0 (7.39) 

Hence, 

" 2 =-(£<*!-1«3)^2 ( 7 - 4 ° ) 

With the secular terms eliminated, (7.38) becomes 

u = ea cos (r + 0 ) + £ e V a 2 [cos (2T + 2/5) - 3] + • • • (7.41) 

where 

r = a* = [1 + (| a 3 - f2 + • • • (7.42) 

We note that the secular term at 0(e3) in (7.38) is used to determine co2. The re
maining part is bounded and hence it is not included in (7.41) because the ex
pansion is ended to this order, and the error is 0(e3) for all r < t 9 ( e _ 1 ) . This 
point is discussed in more detail in Section 4.5. 

Returning to (7.30), we note that the first secular term appears at 0 ( e 3 ) . 
Consequently, we could have concluded that co, = 0 before carrying out the ex
pansion because the term eco, in (7.31) creates secular terms at 0(e2) and not 
at c9(e3), as needed to eliminate the secular term from (7.30). Had we used this 
fact, we would have shortened the algebra considerably. Next, we show that 
application of the Lindstedt-Poincare technique to this problem involves less 
algebra than that needed in applying the method of renormalization. 

7.3. The Lindstedt-Poincare Technique 

Introducing the transformation T = cor in (7.9) gives 

c o V +u + a2u2 + <*3w3 = 0 (7.43) 

where the prime denotes the derivative with respect to r. Next, we expand co 
and u in powers of e as 

u = eu , ( T ) + e 2 w 2 ( r ) + e 3 w 3 ( r ) + • • • (7.44) 

co = 1 + ecoj + e2co2 + • • • (7.45) 

As discussed in the preceding chapters, the first term in the expansion of co is 
the linear frequency, which is unity in this case. Substituting (7.44) and (7.45) 
into (7.43), we have 

(1 + eco, + e2co2 + - • )2(eu',' + e 2 u 2 + eV 3 ' + •••) + ewl + e 2 « 2 + e 3 u 3 + • • • 

+ a2(ew, + e2w2 + e 3w3 + • • - ) 2 + a 3 ( e « , + e2u2 + e3u3 + • • ) 3 = 0 

Using the binomial theorem to expand the exponentiated quantities and keeping 
terms to 0 ( e 3 ) , we obtain 



(1 + 2cco, + e2co2 + 2e2co2)(ew',' + e2w2 + e 3 « 3 ) + « / , + e2w2 + e 3 « 3 

+ <x2(e2u2 + 2e3M,u2) + a 3 e 3 « 3 + • • • = 0 

Multiplying the first two terms and equating the coefficients of like powers of 
e to zero yields 

W i + W i = 0 (7.46) 

" 2 + w2 = - 2CO,M" - a2u\ (7.47) 

w3 + u3 ='- 2co,w2 - (co2 + 2CO2)M'I - 2a 2 w,u 2 - a 3 u , (7.48) 

The general solution of (7.46) can be expressed as 

U\— a cos (T + 0) (7.49) 

where a and 0 are constants. Then, (7.47) becomes 

u2 + u2 = 2co, a cos (r + 0) - a 2 a 2 cos2 (r + 0) 
or 

u 2 + u2 = 2co,a cos (r + 0) - ^ a 2 a 2 - ^ a 2 a 2 cos (2T + 20) (7.50) 

Eliminating the secular terms from u2 demands that co, = 0. Then, the solution 
of (7.50) can be obtained as in Section 7.1. The result is 

u2 = - \ a2a2 + I a2a2 cos (2r + 20) (7.51) 

Substituting (7.49) and (7.51) into (7.48) and using the fact that co, = 0 , we 
obtain 

"'3 + " 3 = 2co2c cos ( 7 + 0) - 2a2a cos (r + 0 ) [ - \ a2a2 

+ I a2a2 cos (2r + 20)] - a3a3 cos3 (T + 0) (7.52) 

Using trigonometric identities as in Section 7.1, we rewrite (7.52) as 

" 3 + " 3 = (2co2a - I ot3ar3 + f <x\a3) cos (r + 0) 

" ( i «3 + i a l ) * 3 cos (3T + 30) (7.53) 

Eliminating the secular terms from (7.53) demands that 

2co2a- § a 3 c 3 + | a\a3 = 0 

or 

co2 = § « 3 a 2 - f2 a 2 a 2 (7.54) 

Substituting (7.49) and (7.51) into (7.44) yields (7.41) , wlirreiis subntltutliiK 
(7.54) into (7.45), using r = cor, and recalling that co, = 0 yields (7.42). Thus, 
the Lindstedt-Poincare technique produced an expansion that is in full agree
ment with that obtained by using the method of renormalization with less 
algebra. 
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7.4. The Method of Multiple Scales 

In this section, we determine a third-order uniform expansion by using the 
method of multiple scales. Wc note that to third-order' we need the three scales 
To = T\ ~ et, and T2 = e2t. Then, the time derivatives become 

— = D0 + eDx+e2D2+-- (7.55) 
at 

d2 , 
—t^Dl* 2eD0Dx + e\D\ + 2D0D2) + • • • (7.56) 

whereD n = d/dT„. Using (7.56), we transform (7.9) into 

D\u + 2eD0Dxu + e2(D2u + 2D0D3u) + u + a2u2 + <x3u3 + • • • = 0 (7.57) 

We seek an approximate solution to (7.57) in the form 

u = eiijCTo, 7*,, T2) + e 2 u 2 (7o, 7",, T 2 ) + e 3 « 3 ( r 0 , 71,, 7*2) + • • • (7.58) 

Substituting (7.58) into (7.57) and equating each of the coefficients of e to zero, 
we obtain 

D2
oux+ux=0 ( 739 ) 

D\u2 + u2 = -2D0Dxux - a2u\ (7.60) 

Dlu3 + w3 = -D2ux - 2D0D2ux - 2D0Dxu2 - 2a2uxu2 - a3u\ (7.61) 

The solution of (7.59) can be expressed in the following form: 

«, =A(XuT2)e^ +A(Tx,T2)e-tro (7.62) 

Then, (7.60) becomes 

D2
0u2 + u2 =-2iDxAe,r° + 2iDxAe-'T'> - a2(A2e2iT° + 2AA+JV:'T») (7.63) 

Eliminating the secular terms from u2 demands that 

DxA=0 or A=A(T2) (7.64) 

Then, the solution of (7.63) is taken to consist of its particular solution only, 
which can be obtained by using the principle of superposition, as in the pre
ceding section. The result is 

" 2 = i <x2A2e2rr° + % a 2 Z V 2 / T ° - 2a2AA (7.65) 

Substituting (7.62), (7.64), and (7.65) into (7.61) yields 

D2
0u3 +u3=- 2iA'eiT< + 2iAe-'T° - 2a2(Ae'T° + Ae'1^)^ a2A2e2iT° 

+ i a 2 l V 2 ' T < > ' 2a2AA)- a3(AelT> +Ae-tT*f (7.66) 

where the prime indicates the derivative with respect to 7*2. In arriving at (7.66), 
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we used (7.64) so that Diut =Dlu2 - 0. Using the binomial theorem, we rewrite 
(7.66) as 

Dlui+ui = [~2iA' + ^a2
2A2A- 3a3A2A)err» 

"(§<*! + a3)A V ' 7 » + cc (7.67) 

Eliminating the secular terms from w3 demands that 

- 2iA' + 0§ a2
2 - 3a3)A2A = 0 (7.68) 

Expressing A in the polar form 

A = \ael* (7.69) 

where a and 0 are real, we rewrite (7.68) as 

- ia'e* + a$ei(i + ( f 2 a\ - \ a3)a3ei0 = 0 

or 

-ia +a|3' + ( ^ al - f a 3 ) a 3 = 0 (7.70) 

Separating real and imaginary parts in (7.70) yields 

A ' = 0 (7.71) 

^ ' = ( | a 3 - f 2 <* ! )a 3 (7.72) 

It follows from (7.71) that a = a0~ constant. Then, it follows from (7.72) that 

0 = (f a 3 - f 2 a ^ r 2 + 0 o (7.73) 

where 0 O is a constant and a0 is assumed to be different from zero. 
Substituting (7.69) into (7.62) and (7.65) and recalling that T0 = t, we 

obtain 

ux = a c o s ( f + 0) (7.74) 

u 2 = \a2a2 cos (2r + 20) - \ a2a2 (7.75) 

Then, (7.58) becomes 

u = ea cos (/ + 0) + | e V a 2 [ c o s (2r + 20) - 3] + • • • (7.76) 

Using (7.73) in (7.76) and the facts that a = a0 and T2 ~ e2t, we rewrite (7.76) as 

u = ea0 cos (cor + 0 O ) + i <?a\a2 [cos (2co? + 20 o ) - 3] + • • • (7.77) 

where 

w - l + ( | « 3 - f 2 a l ) e 2 a g + - « - (7.78) 

which is in agreement with (7.41) and (7.42) obtained by using the method of 
renormalization and the Lindstedt-Poincare method. 
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Next, we apply the first approximation of the method of averaging to (7.9). 

7.5. The Method of Averaging 

As before, we use the method of variation of parameters to transform the 
dependent variable from u to a and 0 , where 

u = ea cos (t + 8) (7.79) 

u=-easin(t + B) (7.80) 

and e is a small dimensionless parameter that is a measure of the amplitude of 
oscillation. For the nonlinear problem, a and 8 are variables. Differentiating 
(7.79) with respect to t yields 

« = -ea sin (/ + 0 ) + ea cos (t + 8) - cap sin (t + 0 ) (7.81) 

Comparing (7.80) and (7.81), we conclude that 

acos ( f + 0 ) -< i0sin(r + 0 ) = O (7.82) 

Differentiating (7.80) with respect to t yields 

u = - ea cos (f + 0 ) - ea sin (t + 0 ) - ea($ cos (t + 0 ) (7.83) 

Substituting (7.79) and (7.83) into (7.9), we have 

a sin (t + 0 ) + 00 cos (t + 0 ) = a2 ea2 cos2 (r + 0 ) + a 3 e V cos3 (f + 0 ) (7.84) 

Solving (7.82) and (7.84) for a and 0 , we obtain 

d=a2 ea2 sin (/ + 0 ) cos2 (f + 0 ) + a 3 e V sin (f + 0 ) cos3 (f + 0 ) (7.85) 

P = oc2ea cos3 (r + 0 ) + a 3 e V cos4 (f + 0 ) (7.86) 

where a is assumed to be different from zero in arriving at (7.86). 
Since a is small, a and 0 are slowly varying functions of t. Then, one might 

attempt to average (7.85) and (7.86) for a first approximation. To this end, 
one uses trigonometric identities to rewrite (7.85) and (7.86) as 

a = | ot2ea2[sin (r + 0 ) + sin (31 + 30)] + \ a 3 e 2 a 3 [ 2 sin (2t + 20) 

+ sin(4f + 40)] (7.87) 

0 = \ a2 ea [3 cos (f + 0) + cos (31 + 30)] + \ « 3 e V [cos (4r + 40) 

+ 4 cos (It + 20) + 3] (7.88) 

Keeping the slowly varying parts on the right-hand side of (7.87) and (7.88), 
we obtain 

d=0 (7.89) 
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0 = i « 3 e V (7.90) 

Whereas (7.89) agrees with (7.71), (7.90) does not agree with (7.72) obtained 
by using the method of multiple scales. There is a term f-2 a2€2a2 missing from 
(7.90). Following the details of the solution in the preceding section, one finds 
that this term is the result of the interaction of the first- and second-order ap
proximations. This interaction was not taken into account in arriving at (7.89) 
and (7.90). To include the effect of this interaction, we need to carry out the 
solutions of (7.87) and (7.88) to higher order. This is accomplished by using 
the generalized method of averaging, which is discussed next, or its variant the 
Krylov-Bogoliubov-Mitropolsky technique, which is discussed in Section 7.7. 

7.6. The Generalized Method of Averaging 

To apply this method, we introduce the variable 

0 = f+/3 (7.91) 

and rewrite (7.87) and (7.88) as 

fl = j « 2 ea2 (sin 0 + sin 30) + | a 3 e V (2 sin 20 + sin 40) (7.92) 

0 = 1 + £ a 2 ea(3 cos 0 + cos 30) + | a 3 e 2a 2 (cos 40 + 4 cos 20 + 3) (7.93) 

We seek approximate solutions to (7.92) and (7.93) in the form 

a = aQ(t) + efl,(fl0,0o) + e2a2(a0,0O) + • • • (7.94) 

0 = 0 O (O + €0 , ( 0 0 ,0 O ) + e 2 0 2 ( f l o , 0 O ) + • • (7.95) 

a o = eA, ( f l 0 ) + e2A 2(a0 ) + • • • (7.96) 

0o = 1 + e4»,(fl0)+ e2*2{a0)+ • • • (7.97) 

The functions ay,a2y. .. and 0 , , 0 2 , . . . are fast varying functions of 0 O , while it 
follows from (7.96) and (7.97) that a0, and hence, the A„ and <J>„ are slowly 
varying functions of t. 

Using the chain rule, we write the first derivatives of (7.94) and (7.95) as 

da, . do, - , da2 . , da2 • 
a = a 0 + e - 1 a0 + € — 0 O + e 2 — a0 + e 2 — 0 O + • • • (7.98) 

da0 o0o oa0 d0 o 

J, _ 1 j . ^01 • . 90, 1 , 2 902 . 2 902 • Q Q . 
0 = 0o + € — a0 + e — 0 o + e 2 —a0+ e 2 — 0 O

 + ' ' ' (7.99) 
0a0 0<t>0 dan 90« 

Substituting (7.96) and (7.97) into (7.98) and (7.99) and keeping terms up to 
C>(e2), we obtain 
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Next , wc need to substitute (7 .94 ) and (7 .95) into (7 .92 ) and (7 .93 ) and ex

pand the right-hand sides for small e keeping terms up to 0(e2). From the right-
hand side of (7.92), we have 

ea2(sin 0 + sin 30) = e(a0 + ea , ) 2 [sin (0 O + £0i) + sin (30 o
 + 3e0,)] + • • • 

= e(al + 2ea0ai)[sm <j>0 + e0, cos 0 O + sin 30 o 

+ 3e0, cos 30 o ] + • • • 

= eal (sin0o + sin 30 o ) + 2e2a0fli(sin 0 O + sin 30 o ) 

+ e 2 ^0 j ( cos 0o + 3 cos 30 o ) + • • • (7.102) 

e V ( 2 sin 20 + sin 40) = e2a%(2 sin 20 o + sin 40 o ) + • • • (7.103) 

From the right-hand side of (7.93), we have 

ea(3 cos 0 + cos 30) = e(aQ + ea,)[3 cos (0 O + e0,) + cos (30 o + 3e0,)] + • • • 

= €(aQ + ea,)[3 cos 0 O - 3e0i sin 0 O + cos 30 o 

- 3e0! sin 30 o ] + • • • 

= e<z0(3 cos 0o + cos 30 o ) + e2*z,(3 cos 0 O + cos 30 o ) 

- 3e2ao0i(sin 0 O + sin 30 o ) + • • • ' (7.104) 

and 

e V ( c o s 40 + 4 cos 20 + 3) = e2flo(cos 40 o + 4 cos 20 o + 3) + • • • (7.105) 

Substituting (7.100) through (7.105) into (7.92) and (7.93) and equating co
efficients of like powers of e, we obtain 

Ai + r ^ - = \ a2a2(sin 0 O + sin 30 o ) (7.106) 
d0 o 

da2 Oa, 3a, . . 
A2 + — + A l — + <J>, — = f a2<V*i(sin 0 O + sin 30 o ) 

002 oa0 °0o 

+ z a2co0i(cos 0o + 3 cos 30 o ) + | a3c^(2 sin 20 o + sin 40 o ) (7.107) 

q>i + r ~ = i a2a0(3 cos 0 O + cos 30 o ) (7.108) 
O0o 

d0 2 30, 90, , , 
* 2 + r - - + At — + * , — = i a2f l , (3 cos 0 O + cos 30 o ) - f a 2 a o 0i (s in 0 O 

o0o d0 o o0o 
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+ sin 30 o ) + | a3al(cos 40 o + 4 cos 20 o + 3) (7.109) 

Next, we use the method of separation of variables to separate the fast and 
slowly varying terms in (7.106) through (7.109). The slowly varying parts of 
(7.106) and (7.108) yield 

AX=<1>1=0 (7.110) 

whereas their fast varying parts yield 

90o 4 
= 1 <*20o(sin 0o + sin 30 o ) (7.111) 

P_0J__ \ 
80o " 4 

= z a 2 f l 0 (3 cos 0o + cos 30 o ) (7.112) 

A particular solution of (7.111) is 

°i ~ ~ 5 a2tfo(cos 0o + 5 cos 30 o ) (7.113) 

whereas a particular solution of (7.112) is 

0! = | a2ao0 sin 0 O + \ sin 30 o ) (7.114) 

Substituting (7.110), (7.113), and (7.114) into (7.107) and (7.109), we obtain 

9o2 • i > 1 
A 2 + — = - i a2ao(cos 0 O + \ cos 30o)(sin 0 O + sin 30 o ) 

90o 

+ YI a2^o(3 sin 0o + 5 sin 30o) (cos 0 O + 3 cos 30 o ) 

+ | a3flo(2 sin 20 o + sin 40 o ) (7.115) 

902 1 7 2 I 

<£2 + —— = --h a2ao(cos 0 O + \ cos 30O) (3 cos 0 O + cos 30 o ) 

- f\ a2flo(3 sin 0 O + I sin 30o)(sin 0 O + sin 30 o ) 

+ | a30o(cos 40 o + 4 cos 20 o + 3) (7.116) 

Using trigonometric identities (Appendix A ) , we rewrite (7.115) and (7.116) as 

A * +1? = h ao[(4«3 " f ocl) sin 20o + (2a 3 + l-§ al) sin 40 o + £ a 2 sin 60 o ] 
90o 

(7.117) 

90 

* 2 + = ( f tt3 " f 2 «D*0 + ( ^ 3 ~ f6 <*1>0 COS 2 0 0 90o 

+ (1 + i « 2 ^ o cos 40 o + ± a\al cos 60 o (7.118) 
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Since we are seeking an expansion valid to 0(e2), we do not need to solve fora2 

and 0 2 . All we need to do is to investigate (7.117) and (7.118) to determine the 
slowly varying parts, and hence, determine A2 and <"p2. Hence, 

A2 = 0 (7.119) 

Substituting (7.113) and (7.114) into (7.94) and (7.95) yields 

a=a0- | a2e<2o(cos 0 O + 3 cos 3 0 o ) + • • • (7.121) 

0 = 0o + I <x2€a0(3 sin 0 O + | sin 30 o ) + • • • (7.122) 

Substituting (7.110), (7.119), and (7.120) into (7.96) and (7.97) gives 

j 0 = 0 (7.123) 

0 o = l + ( |a 3 - f 2 a 2 ) e 2 4 (7.124) 

It follows from (7.123) that a0 = constant, and then it follows from (7.124) that 

0o = t + (| a 3 - f2 oc\)e2alt + 0O (7.125) 

where (30 is a constant. Substituting (7.121) and (7.122) into (7.79) gives 

u = e[a0 - ^ai62o(cps 0 O + 3 cos 3 0 o ) + • • •] cos [0 O + %ct2eao@ sin 0 O 

+ \ s in30 o ) + - • •] (7.126) 

To compare the present solution with those obtained by using the method of 
multiple scales and the Lindstedt-Poincare technique, we need to expand the 
circular function in (7.126) for small e about 0 O . Thus, we write 

u = e[a0 - \ <x2ea\(cos 0 O + 3 cos 30 o ) ] [cos 0 O 

- | a 2 ea0 sin 0O(3 sin 00+3 sin 30 o ) ] + • • • 

= ea0 cos 0o - | a 2 e2a\ [cos2 0 O + 3 cos 0 O cos 30 o 

+ 3 sin2 0 o + 3 sin 0 O sin 30 o ] + • • • 

- ea0 cos 0o - 5 ct2€2al[j + £ cos 20 o + 3 cos 20 o 

+ § - f cos 20 o ] + • • • 

or 

a = ea0 cos 0 O + | e 2 Ooa 2 ( cos 20 o " 3) + • • • (7.127) 

The expansion represented by (7.125) and (7.127) agrees with the expansion 
(7.77) and (7.78) obtained by using the method of multiple scales. Comparing 
the algebra in this case with those in Sections 7.2 and 7.4, we conclude that the 
methods of renormalization and multiple scales have advantages over the gener
alized method of averaging. 



7.7. The Krylov-Bogoliubov-Mitropolsky Technique 

In this section, we describe a variant of the generalized method of averaging, 
namely the Krylov-Bogoliubov-Mitropolsky technique. It is often referred to as 
the asymptotic method. 

When the nonlinear terms are neglected, the solution of (7.9) is 

u - ea cos (t + 0) (7.128) 

where a and 0 are constants and e is a small dimensionless parameter that is a 
measure of the amplitude. When the nonlinear terms are included, we consider 
(7.128) to be the first term in an approximate solution of (7.9) but with slowly 
varying rather than constant a and 0. Moreover, we introduce the fast scale 0 = 
t + 0 and use a to represent the slow variations. Thus, we seek an approximate 
solution to (7.9) in the form 

u—ea cos 0 + e 2 u 2 (a ,0 ) + e 3 u 3 (a, 0) + • • • (7.129) 

Since a and 0 are slowly varying functions of /, we express them in power series 
of e in terms of a. Then, we write 

•a = eA1(a)+€2A2(a)+-- (7.130) 

0=1+e4>, ( f l ) + e 2 4> 2 (a )+ - - - (7.131) 

Thus, this method can be viewed as a multiple scales procedure with a and 0 
being the scales. 

Using the chain rule, we can express the derivatives with respect to t in terms 
of the new independent variables a and 0 as 

d 3 . 3 

( 7 - 1 3 2 ) 

d2 , 9 2 9 . . 9 2 9 2 .. 9 
^ = a 2 ^ + a — + 2 « 0 — + 0 2 —^ + 0 — (7.133) 
dr ba1 9a 9a90 90 2 30 

Differentiating (7.130) with respect to t gives 

a = eA\a + e2A'2a + • • • (7.134) 

where the prime denotes the derivative with respect to the argument. Substi
tuting (7.130) into (7.134) gives 

a = eA\{eA, + e2A2 + • • •) + e2A2(eA , + •••)+••• 

or 

a=e2AiA\ + 6>(e3) (7.135) 

Differentiating (7.131) with respect to t yields 

0 = e4>',fl + e2<I>2a + • • - (7.136) 
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Substituting (7.130) into (7.136) gives 

0 = €<P\(eA i + e2A2 + • ") + €2<*>'2(€A , + ••) + 

0 = e2/i,4>, + (3 (e 3 ) (7.137) 

Substituting (7.130), (7.131), (7.135),and (7.137) into (7.132) and (7.133), we 
have 

dt 

£_ 

dt2 

(eA, + e2A 2 + • • •) £ + (1 + e4>, + e24>2 + • • •) ~ 

(cA1+e2A2+- )2 ~ + (e2AxA\ + • • -)~ 

+ 2(6/1, + e2A2 + • • )(1 + e<*>, + e2<l>2 + • • •) 

+ (1 + e$ , + e24>2 + • • • ) * + + ' * 0 
0 0 

9a90 

9_ 

60 

Hence, 

d_ 

dt 

d \ b 31 A b ^ 

d1 a2 , r a2 an 

••»[<*i + 2 . o £ 

d0 

+ 2 (v*2 + ^ , * , ) 
9a90 

90j 

Then, (7.9) becomes 

b^u 

b<j>: 
•+2e a2u ]+e

2[(*2 

(7.138) 

(7.139) 

b2u b2u 

bab(f> 

+ A2-4 + AtA\ ~ + A1^'1 £ + W + a 2 M
2 + a 3 « 3 + - - - = 0 (7.140) 

ba ba o0J 

Substituting (7.129) into (7.140) and equating coefficients of like powers of 
e, we obtain 

b2u2 

90 2 

+ « 2 - 2 * , a cos 0 - 2>1, sin <f> + a2a2 cos2 0 = 0 (7.141) 
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^ + w3 + 2 * , ^ - + 2 / l 1 ^ - ( < I > 2 + 2<l>2)flcos0- 2(A2 + A,4>,) sin 0 

+ A\A\ COS 0-/4, fI>'itf sin 0 + 2a2u2a cos 0 + a,tf3 cos3 0 = 0 (7.142) 

Using the trigonometric identity (A 13), we rewrite (7.141) as 

32w2 

——r- + u2 = 24>, a cos 0 + 2,41 sin 0 - i a2<r - \ a2a2 cos 20 (7.143) 
00 z 

Eliminating the secular terms from u2 demands that 

<J>!=0 and Ax=0 (7.144) 

Then, as before, the solution of (7.143) can be written as 

u2 = - \ <x2a2 + | a 2 a 2 cos 20 (7.145) 

Substituting (7.144) and (7.145) into (7.142) gives 

3 2 M 
-—-fr + u3 = 2 * 2 A cos 0 + 2,4 2 sin 0 - 2a2acos 0 [- \ a2a2 

30 

+ | a2tf2 cos 20] - a3a3 cos3 0 (7.146) 

Using trigonometric identities (Appendix A ) , we rewrite (7.146) as 

3 2 

• + u3 = ( 2 * 2 - I a3a2 + I a\a2)a cos 0 + 2.4 2 sin 0 30 2 - i « 3 v^-»"2 4 « 3 " " 6 

- ( i a 3 + i « l > 3 c o s 3 0 (7.147) 

Eliminating the secular terms from u3 demands that 

A2 = 0 * 2 = ( | a 3 - f 2 a i y (7.148) 

Substitute (7.144) and (7.148) into (7.130) and (7.131) yields 

a = 0 (7.149) 

0 = 1 + (| a 3 - f2 a l ) e V + • • • (7.150) 

which are in agreement with (7.123) and (7.124) obtained by using the gener
alized method of averaging, and hence, with the solution obtained by using the 
method of multiple scales. 

Exercises 

7.1. Consider the equation 

x - 2x ~ x2 + x3 = 0 

Show that the equilibrium positions are JC = 0, - 1 , and 2. Put x = 2 + u and deter-
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mine the equation governing u. Then, determine a second-order uniform expan
sion for small but finite amplitudes using 

(a) the Lindstedt-Poincare method, 
(b) the method of multiple scales, and 
(c) the generalized method of averaging. 

7.2. Consider the equation 

u - u + u4= 0 

Show that u = 1 is an equilibrium point. Determine a second-order uniform ex
pansion for small but finite motions around u = 1. Hint: put u - 1 + x, deter
mine the equation describing x, and then use the Lindstedt-Poincare method or 
the method of multiple scales or the generalized method of averaging. 

7.3. Consider the equation 

u - u + u6 = 0 

Show that u = 1 is an equilibrium position. Determine a second-order expansion 
for small but finite motions around u = 1. 

7.4. Consider the equation 

3 
x + x = 0 

16(1 - x) 

Show that the equilibrium points are x = \ and |. Examine the motion near 
these equilibrium points. Determine a second-order expansion around the stable 
equilibrium point (i.e., the one corresponding to sinusoidal motions). 

7.5. Determine a second-order uniform expansion for 

i i + M + e V +eu 2 = 0 e « 1. 

7.6. Determine a second-order uniform expansion for 

ii + u + €u2 + cu2 = 0 e « l . 



CHAPTER 8 

General Weakly Nonlinear Systems 

In this chapter, we consider systems having a single degree of freedom under the 
influence of general forces. Specifically, we consider the equation 

u + u = ef(u, u) (8.1) 

where e is a small dimensionless parameter, the dot denotes the derivative with 
respect to the dimensionless time t, and u is a dimensionless dependent variable. 
The function / is general but piecewise continuous, so that the equations con
sidered in the preceding four chapters are special cases of (8.1). In this chapter, 
we do not restrict/to be an analytic function of u and u. 

As before, we start by determining a first-order straightforward expansion and 
discuss its uniformity. In Section 8.2, we use the method of renormalization to 
render this straightforward expansion uniform. In Sections 8.3 and 8.4, respec
tively, we use the methods of multiple scales and averaging to determine first-
order uniform expansions. Finally, in Section 8.5, we apply the results to 
nonanalytic functions/as well as to the cases treated in the preceding chapters. 

8.1. The Straightforward Expansion 

As before, we seek a first-order expansion in the form 

w(r;e) = w0(r) + e«,(0 + - • • 

Substituting (8.2) into (8.1) gives 

u0 + mx + • • • + u 0 + eui + • • • = e/[w0 + eux + • • •, u0 + eux + 

= ef(u0, u0) + • • • 

Equating the coefficient.? o f c" and f on both sides of (H.3). wc obtain 

w0 + "o = 0 (8.4) 

u, + u , -Au0, u0) (8.5) 

(8.2) 

(8.3) 

177 
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The general solution of (8.4) can be written as 

u0 - a cos (f + B) (8.6) 

where a and B are constants. Then, (8.5) becomes 

" I + " i = f[a cos (r + B), -a sin (r + 0 ) ] (8.7) 

To determine a particular solution for the inhomogeneous equation (8.7), we 
find it convenient to express the inhomogeneous term in a Fourier series. To this 
end, we note that / is a periodic function of t having the period 2-n. Hence, its 
Fourier expansion has the form 

f[a cos (r + 0 ) , -a sin (t + 0 ) ] = f0(a) + £ fn(a) cos (nt + nB) 
n = 1 

oo 

+ £ gn(a) sin (nt + nB) (8.8) 
n = l 

where 

1 r2n 

fo(a) = — /facos0,-asin0)c/0 (8.9) 

1 f 2 " 7 

fn(a) = — I /(a cos 0,-a sin 0) cos « 0 c?0 (8.10) 
rr J 0 

l * f 2 f f / 
Sn(o) ~ ~~ | /fa cos 0, -<* sin 0) sin «0rf0 (8.11) 

IT JQ 

Using (8.8), we rewrite (8.7) as 

oo oo 

"i + "i = /o + Z fn cos (nt + nB) + £ sin (/tf + nB) (8.12) 
w = l n = 1 

Since (8.12) is linear, one can use the principle of superposition and determine a 
particular solution as the sum of particular solutions, one corresponding to each 
inhomogeneous term. It follows from (B69), (B76), (B78), and (B82) that a 
particular solution for (8.12) is 

" i =/ o + i f ,/sin( f + 0 ) - ^ , f c o s ( / + 0 ) + £ -~-j{fn cos(nt + n0) 

n = 2 1 n 

+ gn sin ( « / + «£ ) ] (8.13) 

As before, we do not include the homogeneous solution of (8.12), so that (8.13) 
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gives its solution. Substituting (8.6) and (8.13) into (8.2) yields 

u = a cos (r + 0) + e {/ 0 + \fxt sin (f + 0) - -^xf cos (f + 0) 

oo I 
+ V j [ / n c o s ( « f + ,i0) + g„sin( i i f + ,t0)]} + --- (8.14) 

We note that (8.14) is not valid for t>0(e~1), owing to the presence of the 
mixed-secular terms. Next, we use the method of renormalization to render this 
straightforward expansion uniform. 

8.2. The Method of Renormalization 

To render (8.14) uniform, we introduce the transformation 

7 = cor co = 1 + eco, + • • • (8.15) 

Then, 

f = W ~ 1 T = T (1 +eoil + • • - ) " 1 = (1 " e w i > + - • • (8.16) 

Substituting (8.16) into (8.14) gives 

u = a cos (T + 0 - eco {T + • • •) + e {/0 + |/i(r - eco,7 + • • •) sin (T + 0 

- ecojT +•• • ) . - \giij - ecox7 + • • •) cos (r + 0 - eco,7 + • • •) 

1 
+ X 2 \fn c o s ( w r + n$ ~ ccoittr + • • •)+ gn sin (m + ,z0 

- eco,,ir + ••• ] } + •• • (8.17) 

Using the expansions 

cos («7 + «0 - eco!«7 + • • ) = cos («7 + «0 ) + eco,m- sin (,*7 + «0 ) + • * • 

(8.18) 

sin (,rr + «0 - eco,m- + •••) = sin ( « 7 + ,70) - eco,w cos (,17 + «0 ) + • • • 

(8.19) 

we rewrite (8.17) as 

u = a cos (7 + 0) + e{f0 + ( j / i + co xd)T sin (7 + 0) - \gxT cos (7 + 0) 

+ T — ^ [/„ cos (m- + «0 ) + gn sin (,17 + ,10)]} + • • • (8.20) 
/i- 2 1 " n 

Eliminating the secular terms from (8.20) demands that 

w i f l + i / . O O - O (8.21) 

file:///giij


*i(<0 = 0 (8.22) 

Equation (8.22) provides the values of a for which periodic solutions exist. 
Then, it follows from (8.15) and (8.21) that these periodic solutions have the 
frequencies 

" = 1 + (8.23) 

Using (8.10) and (8.11), we rewrite the conditions (8.22) and (8.23) for periodic 
solutions as 

J r2n 
I f{a cos 0, -a sin 0) sin 0 d<p - 0 (8.24) 

o 

f 2ir 

f(a cos 0, -a sin 0) cos 0 d<f> + • • • (8.25) 

w 

For the Duffing equation (4.7),/= -u3 and (8.24) and (8.25) become 

r7.1t 
a3 cos3 0 sin 0 c?0 = 0 (8.26) 

/-2rr 

co = 1 + — I a3 cos4 0c/0 + «• • = 1 + |e<z2 + • • • (8.27) 
2m J0 

The integrations in (8.26) and (8.27) were carried out as in (A31) and (A37). 
Equation (8.26) is satisfied for all a, while (8.27) is in agreement with (4.80). 

For the Rayleigh equation (6.4) ,/ = it - ^w3 and (8.24) and (8.25) become 

r2jr 

( - o : s i n 0 +3J 3 sin3 0) sin0c/0 = O 
Jo 

f 2rr 
(-a sin 0 + \a3 sin3 0) cos 0 d<b + • • • 

After carrying out the integrations as in (A32), we have 

a + i f l 3 = 0 (8.28) 

c o = l + 0 ( € 2 ) (8.29) 

in agreement with (6.27) and (6.28). 

http://r7.1t


8.3. The Method of Multiple Scales 

To detennine a uniform first-order expansion by using the method of multiple 
scales, we introduce the two scales T0 = t and Tx = et. Then, the derivatives 
become 

y = D 0 + e D 1 + - -
at 

d2 

- ^ = D2
0+2eD0Dx+--

where Dn = d/dTn. Hence, (8.1) becomes 

D\u + 2eD0Dxu + - -- + u = ef[u, D0u + eDxu + • • •] (830) 

We seek an approximate solution to (830 ) in the form 

u = u0(T0, Tx) + eux(T0, Tl) + --- (831 ) 

Substituting (8.31) into (8.30) gives 

Dlu0 + eDlux + 2eDS)Dxu0 + • • • + u0 + eux + • • • = ef[u0 + eux 

+ • • • ,D0u0 + eDxu0 + CDQUX + • • • ] = ef{u0, D0u0)+- • • 

Equating coefficients of like powers of e on both sides yields 

^ o « o + " o = 0 (832 ) 

Dlui + M , = -2D0Dxu0 +f(u0, D0u0) (833 ) 

To be able to use directly the Fourier series expansion (8.8), we express the 
general solution of (8.32) in the following real rather than complex form as done 
before: 

M 0 = a cos (T0 + 0) (8.34) 
Hence, 

DQU0 = -a sin (T0 + 0) 

DxDou0 = -a sin (T0 + 0) - a0' cos (TQ + 0) 

Then, (833 ) becomes 

D2
0ux + u, = 2a sin (T0 + 0) + 2a0' cos (T0 + 0)+f[a cos (T0 + 0), 

a s i n ( r o + 0 ) ] (8.35) 

Using the Fourier-series expansion (8.8) for/, we rewrite (8.35) as 

Dlux + u x = 2a sin (T0 + 0) + 2a0' cos (TQ + 0) + f0(a) 
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on OO 
+ Z fnifl) cos (nTo + *0) + £ gn(a) sin (nT0 + «0 ) (8.36) 

n - 1 « - 1 

Eliminating the secular terms from M , demands that 

2fl '+£,(a) = 0 (8.37) 

2 * 0 '+/ , ( « ) = 0 (8.38) 

Substituting (8.10) and (8.11) into (837 ) and (838) yields 

i c2n 

<*' ~ ~z~ I Aa cos 0, -a sin <j>) sin 0 cf0 (8.39) 
27r J 0 

1 f 2 n 

aB' = - — I /(a cos 0, -a sin 0) cos 0 c?0 (8.40) 
2?r J0 

Substituting (8.34) into (8.31) and setting T0 = t, we find that to the first 
approximation 

u=acos(t + B) + - • • (8.41) 

where a and 0 are given by (8.39) and (8.40). We apply the present solution to 
a number of special cases in Section 8.5. Next, we derive (8.39) through (8.41) 
by using the method of averaging. 

8.4. The Method of Averaging 

First, we need to use the method of variation of parameters to transform the 
dependent variable from u to a and B where 

w(f) = fl(0cos [ f + 0(0] (8-42) 

such that 

ti(0 = ~<t) sin [t + 0 (0 ] (8.43) 

Thus, u and it have the same form as the unperturbed case for which e = 0. 
Differentiating (8.42) with respect to f yields 

w = -asin(/ + 0) + acos(r + 0)-a0sin(r + 0) (8.44) 

Comparing (8.43) and (8.44), we conclude that 

acos (r + 0)-A0sin (r + 0) = O (8.45) 

Differentiating (8.43) with respect to / yields 

u = -a cos (/ + 0) - a sin (/ + 0) - a0 cos (t + 0) (8.46) 
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Substituting (8.42), (8.43), and (8.46) into (8.1) gives 

a sin (t + 0 ) + a/3 cos (t + 0 ) = - ef [a cos (t + 0 ) , -a sin (r + 0 ) ] (8.47) 

Adding (8.45) times cos (f + |3) to (8.47) times sin (t + 0 ) , we obtain 

a = -e sin (/ + 0 )/la cos (/ + /3), -a sin (r + 0 ) ] (8.48) 

Substituting (8.48) into (8.45) and solving for a/3, we obtain 

a0 = - e cos (f + 0 ) f[a cos (f + 0 ) , -a sin (r + 0 ) ] (8.49) 

Replacing/by its Fourier expansion (8.8), we rewrite (8.48) and (8.49) as 

oo oo 

a = -es in(r + 0 ) [/0(a) + £ fn(a) cos (nf + n 0 ) + £ £„(<*) sin (nf + « 0 ) ] 
n = 1 n = 1 

(8.50) 

oo oo 

a/3 = -e cos (f + /3) [/0(a) + £ /„(a) cos ( « f + nB) + £ &» ( « ) sin (nt + «|3)] 
n = 1 /» = 1 

(8.51) 

Using trigonometric identities, we rewrite (8.50) and (8.51) as 

a = -e/0(a) sin (? + 0 ) - £ / n (a ) {sin [(n + l ) f + {n + 1)0] - sin [ ( « - l )r 

+ ( « - 1)0]} - \e f ) {cos [ ( « - l ) r + (n - 1)0] - cos [(n + 1)/ 
/i = I 

+ ( « + l ) 0 ] } (8.52) 

c0 = -ef0(a) cos (r + 0 ) - } e £ /„(a) {cos [ ( « + l )r + ( « + 1)0] 
« = I 

+ cos [ ( « - l )r + (n - 1)0]} - \e f ; * „ ( « ) {sin [(n + 1)/ 
n = 1 

+ (n + 1)0] + sin [ ( « - l ) f + (n - 1)0]} (8.53) 

As before, to the first approximation, we keep only the slowly varying parts 
on the right-hand sides of (8.52) and (8.53). These parts are the terms that do 
not depend explicitly on t. Thus, 

a = -\egl(a) (834 ) 

ah-leMa) (8.55) 



which are in agreement with (8.39) and (8.40) obtained by using the method of 
multiple scales. 

8.5. Applications 

As a first application, we consider the Duffing equation (4.7). In this case 
/ - -w3 and (8.39) and (8.40) become 

1 f 2 7 r 

— a3 cos3 0sin0d<f> = 0 (8.56) 
lit J0 

1 f2 7 r 

a0' = — a* cos4 0 d<p = |a 3 (8.57) 

in agreement with those obtained in Chapter 4. The integrations in (8.56) and 
(8.57) as well as in all following cases were performed as in Section A.3. 

As a second application, we consider the linear damped oscillator (5.2). In 
this case,/ = -2u and (8.39) and (8.40) become 

- 3 „ 3 

,- = --L f 
2ir Jn 

2 It 
2 

2cr sin2 0J0 = -a (8.58) 

°® 2TT f0 

o 

2n 

2a sin 0 cos 0 d<p = 0 (8.59) 

in agreement with those obtained in Chapter 5 to first-order. 
As a third application, we consider the Rayleigh equation (6.4). In this case, 

f-ii- ^ i i 3 and (8.39)and (8.40)become 

(8.60) 
1 fi7T 

2 7 T J 0 

1 f 2* 
aj3' = (-a sin 0 + \a2 sin3 0 ) c os0d0 = O (8.61) 

2TT J 0 

in agreement with those obtained in Chapter 6. 
As a fourth application, we consider (7.9). Since there is no small parameter 

that appears explicitly in (7.9), we introduce one by setting u-ev and obtain 

v + v + ea2v2 + e 2 a 3 u 3 = 0 (8.62) 

Hence,/ = -a2v2 and (8.39) and (8.40) become 



i r2n 

a-— I ot2a2 cos2 0 sin 0 d<f> = 0 (8.63) 

1 f 2 f f 

aj3' = — I a2f l 2 cos3 0 d0 = 0 (8.64) 
in agreement with those obtained in Chapter 7. We note that the effect of non-
linearity on the amplitude and phase appears at second order. 

In the remaining two applications, we consider nonanalytic functions /. In 
the first case, we consider 

a + u = -eu\u\ (8.65) 

Hence,/= -ii\u\ and (8.39) and (8.40) become 
1 f2n 

a' = ~ a2 sin2 0 I sin 0 I d<}> (8.66) 
27T J0 

i r * 
= -—- I a2 sin 0 cos 0 I sin 0 I dQ (8.67) 

2ir J0 

To perform the integrations in (8.66) and (8.67), we note that sin 0 > O for 
O < 0 < 7 r and s i n 0 < O for 7r<0<27r. Hence, I sin 0 I = sin 0 in the first 
interval and I sin 0 I = -sin 0 in the second interval. Consequently, we break the 
integration interval in (8.66) and (8.67) to the intervals [0, IT] and [n, 2n], so 
that we replace I sin 0 I by sin 0 in the first interval and by -sin 0 in the second 
interval. Then, we rewrite (8.66) as 

> °2 C 3 , a2 r2n
 . a2 r 

a ~ I sin 0 d<p + — | shr 0 d<p = — I (3 sin 0 - sin 30) d<p 
2n J0 2tt J„ 8tt J0 

a2 [2* a2 

+ — I (3 sin 0 - sin 30) d<t> = -— (3 cos 0 - \ cos 30) 
8tt J 8tt 

a 
- — (3 cos 0 - 4 cos 30) 

87T 

or 

2n 

a' = -~a2 (8.68) 
J7T 

Also, we rewrite (8.67) as 
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a2 f a2 f2n a2 

aB' = — I sin2 0 cos 0 d<f> + — I sin2 0 cos 0^0 = — sin3 0 
2n J0 lit Jn on 

2 I 2 n 

+ — sm 0 

or 

aB' = 0 (8.69) 

Equation (8.69) leads to B = B0 = constant, whereas (8.68) can be integrated 
by separation of variables. Thus, 

da 4 _ 
- - = — dTl (8.70) 
a 3n 

Integrating (8.70) gives 

1 4 4 
- + c = - 7 \ = - e r (8.71) 
a 3tr 3tt 

where c is a constant. If a(0) = a0> then c = - \/a0. Hence (8.71) becomes 

1 1 4 
- = — + — e f 
a a 0 37r 

or 

* = ^ ( 8 . 7 2 ) 

1 + r~ eta0 

3it 

Next, we consider 

u + u = -€u\u\ (8.73) 

In this case,/ = -u\u\ and (8.39) and (8.40) become 

1 f2" 
a = — I a 2 cos 0 I cos 0 I sin 0 tf0 (8-74) 

lit J 0 

1 C2n 

aB' = — I a 2 cos2 0 I cos 0 I d<f> (8.75) 
2n Jrt 

We note that cos <p> 0 for - \ i t < 0 < \n and c o s 0 < O for ^ 7 R < 0 < | t t . Since 
the integrands in (8.74) and (8.75) are periodic with the period 27r, the values of 
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.2 /•0/2)w A 2 r* 
cos2 0 sin 0 d<t> - -— / 

2rr J,. 

, a2 ri,iji 

° =2rt I 
cos 0 sin 0 cf0 

(1/2 > 

2 |0/2)W 

67T 
COS 0 

-(1/2)* 

or 

+ — cos3 0 
6tr 

a' = 0 

(1/2)7T 

(3/2)w 

(1/2)W 

(8.76) 

Also, we rewrite (8.75) as 

,2 /-(1/2)7T 

2trJ_( 

87T J- ( 1 /2) 

(3/2)* 

cos 0c?0 
(1/2 }n 

1/2)77 

^ 2 p\*l*t 

! 7 T J(1/2)7T 

(3 cos 0 + cos 30) d<p -

cos3 0J0 

?2 /-(3/2)7r 

5 7 r ^(l/2)7r 
(3 cos 0 + cos 30) d0 

- —- (3 sin 0 + \ sin 30) 
07T 

(»/2>r Q 2 

-(l/2}n 
(3 sin 0 + 3 sin 30) 

(3/2)rr 

(l/2)n 

or 

at 
3rr 

(8.77) 

The solution of (8.76) is a = a0 = constant. If aQ ¥= 0, the solution of (8.77) is 

(8.78) 
4 4 

0 = — ao^r + 0 o = — era0 + /30 

37T 37T 
where B0 is a constant. Hence, it follows from (8.41) that to the first approxima
tion 

u = a0 cos ( l + i - « 0 ) , + flo (8.79) 

These applications show that the method of multiple scales and method of 
averaging can be used effectively to determine first-order uniform expansions 
for weakly nonlinear oscillatory systems. 

the integrals are independent of the interval. Hence, we change the integration 
interval from [0, 2ir] to [-jit, f 7r] and break it into the two intervals [-^n, 
•j7r] and |tt ] , so that we can replace Icos 0l by cos 0 in the first interval 
and by -cos 0 in the second interval. Consequently, we rewrite (8.74) as 

.(3/2)»r 
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Exercises 

8.1. For small e, determine first-order unitorm expansions for each of the 
following problems: 

(a) u + u + eulul = 0 
(b) it + u + c(sgn u + 2u,u) = 0 
(c) u + u + e(sgn u + /i2iilul) = 0 

F(u) 

t f F(u) 

(c) 

Figure 8-1. Exercise 8.2. 



(d) ii + u + e(2/i1ti + /i,iilul) = 0 
(e) ii. + u + e(2jLi,ii + sgn it + £i2ulul) = 0 

8.2. Consider the free oscillations of a system governed by 

u + F(u) = 0 

where F(u) is defined in Figure 8-1 for three different cases. Show that in 
first approximation 

(aj 
, 2k 

coo = — 
7T 

sin + - II 
a 

(b) col = k-
2k 

a -si 
(c) 

7T 
sm 

1 / 2 1 



CHAPTER 9 

Forced Oscillations of the 
Duffing Equation 

In contrast with the five preceding chapters, which deal with free oscillations, 
this chapter and the next deal with forced oscillations. To compare the forced-
and free-oscillation cases, we consider one of the systems discussed in the pre
ceding chapter. We choose the Duffing equation (4.5) and consider in this chapter 
its response to a sinusoidal external excitation. That is, we consider 

d2u* 
—r + k1U* + k3U*3=F*COSO)*t* (9.1) 

where F* and co* are constants. As in Chapter 4, we introduce dimensionless 
quantities using a characteristic time T* and a characteristic length U*. Thus, 
we write 

t* u* 
t = — u = — 

T* U* 

Then, (9.1) becomes 

-i: + klT*2u + kzTt 

dt2 

It is convenient to choose T* so that 

d ( 3 + k{T*2u + k3T*2U*2u3 = cos o>*T*t (9.2) 

kj*2 = 1 thus T* = -j== = ~ 
V * i co* 

where co* is the linear natural frequency of the system. Moreover, we let 

F*T*2 co* 
e = k3T*2U*2 F = —— co = co*r* = — 

U* co* 

Then, (9.2) becomes 

u + u + a/3 - F cos cor (93) 
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We note that co is the ratio of the frequency of the excitation to the linear 
natural frequency of the system. Instead of treating (9.3), we treat the following 
slightly more general equation: 

u + u + 2e/iii + ew3 = F cos cot (9.4) 

where ju is a positive constant. Thus, (9.4) includes the effect of small viscous 
damping. 

In this chapter, we determine first-order solutions to (9.4) beginning with the 
straightforward expansion in the next section. We investigate this straightforward 
expansion and determine the conditions for its breakdown. This leads to the so-
called resonant values of co. In Sections 9.2 and 9.3, we use the methods of 
multiple scales and averaging, respectively, to determine first-order expansions 
for all resonant cases, including the effect of slight viscous damping. 

9.1. The Straightforward Expansion 

We seek a straightforward expansion for the solution of (9.4) in 

i i ( r ;e ) = M 0 ( 0 + €Wi(0 + * 

Substituting (9.5) into (9.4) yields 

w0 + eiii + • • • + u0 + eui + • • • + 2e/i(u0 + eu, + • • •) 

+ e(u0 + eu, + -

or 

u 0 + u 0 - Fcos cor + e(u, + u, + 2MU0 + Uo) + * • • = 0 (9.6) 

Equating each of the coefficients of e° and e to zero, we have 

u 0 + Uo ~ F c o s 0 0 1 (9-7) 

u, + u , = -2a x u 0 - ul (9.8) 

Since (9.7) is linear and inhomogeneous, its general solution can be obtained 
as the sum of a homogeneous solution and any particular solution. The homo
geneous solution can be expressed as 

u0h = a cos (t + B) (9.9) 

where a and B are constants, whereas a particular solution is (B69) 

F 
u0 = j-coscof (9.10) 

P 1 - CO 

Hence, 

the form 

(9.5) 

• -)3 = F cos cor 

u0=a cos (f + 6) + 2A cos cor (9.11) 
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where 

A =4(1 - c o 2 ) ' 1 F (9.12) 

Substituting (9.11) into (9.8) gives 

tii +Ui = 2/i[a sin (r + 0) + 2Aco sin cot] - [a cos (r + 0) + 2A cos cor] 3 

= 2/itf sin (t + 0) + 4/JACO sin cor - a3 cos3 (r + 0) 

- 6a2A cos2 (r + 0) cos cor - 12aA2 cos (r + 0) cos2 cot 

- 8A 3 cos3 cor (9.13) 
Using trigonometric identities (Appendix A ) , we rewrite (9.13) as 

w, + « , = 2/xflf sin (r + 0) + 4uAco sin co/ - \tr cos (3r + 30) - (|a3 

+ 6 M 2 ) cos (t + 0) - 2A 3 cos 3cof - (6A 3 + 3a 2 A ) cos cor 

- |a 2 A cos [(2 + co)r + 20] - f a 2 A cos [(2 - co)r + 20] 

- 3flA2 cos [(1 + 2co)r + 0] - 3 M 2 cos [(1 - 2to)r + 0] (9.14) 
As before, we do not include the homogeneous solution at any order except the 
first. Since (9.14) is linear, a particular solution can be obtained as the sum of 
particular solutions, each one corresponding to a different inhomogeneous term. 
It follows from Section B.4 that 

4aAco , , «, = -fiat cos (r + 0) + r sin cor + ha3 cos (3r + 30) 
._ 1 - CO 

- ( l a 3 + 3aA2)r sin (r + 0) , cos 3cor 
V 8 1 - 9co2 

2A-

6A 3 + 3a2 A 

1-co 2 

3a2A 

cos cor + 
3a 2 A 

2(co2 + 4co + 3) 
cos [(2 + co)r + 20] 

3aA2 

-v 2 A _ , c o s [ ( 2 - c o ) r + 20].+ 2 

2(co - 4co + 3) 4(co + co) 

X cos [(1 + 2co)r + 0] + 
3a A ' 

4(co2 - co) 
cos [(1 - 2co)r + 0] (9.15) 

Substituting (9.11) and (9.15) into (9.5) and using (9.12), we obtain 

u - a cos (r + 0) + 
1 -co 2 

+ ^ a 3 cos (3r+ 30) - |a 

cos cor + € 1 

1 „2 
2 4a z +• 

~\iat cos (r + 0) + 

F2 

2 u c o F 

(1 - c o 2 ) 5 

(1 - co 2 ) 2 

r sin (r + 0) 

sin cor 



4(1 - co 2 ) 3 ( i - 9co2) 

3a^F 

4(1 - co2) (3 + 4co + co 2 ) 

3a2F 

cos 3cof 
3F 

a1 +• 2\2 2(1 - co 2 ) 2 [ 2(1 - co2) 
cos cor 

4(1 - co2) (3 - co) (1 - co) 

cos [(2 + co)f + 26] 

cos [(2 - co)f + 23] 

30F2 

16(1 - co 2 ) 2 ( to 2 + co) 

3aF2 

16(1 - co 2 ) 2 (co 2 - co) 

cos [(1 + 2co)t + 6] 

cos [(1 - 2co)f+ 0 ] | + (9.16) 

In addition to the secular terms, we note that (9.16) contains terms whose 
denominators may be very small. Such terms are called small-divisor terms. 
If the frequencies are defined to be positive, small divisors occur when co « 1, 
co as 0 , co « - 3 , and co « 3 . These special frequencies are called resonant fre
quencies. Thus, the straightforward expansion breaks down due to the presence 
of the small divisors as well as the secular terms. 

When co «s 1, small divisors first appear in the first term. Hence, when co « 1 
we speak of a primary or main resonance. When co « 0 , 3 , or 3 , small divisors 
first appear in the second term.T5ence7we speak of the resonances in these cases 
as secondary resonances. Carrying out the expansion to higher order, one finds 
that other resonances may occur. We note that the resonances that occur depend 
on the order of the nonlinearity. They can be easily identified by carrying out 
a straightforward expansion as done above. 

In the next two sections, we use the methods of multiple scales and averaging 
to determine first-order uniform expansions for (9.4) that do not contain 
secular or small-divisor terms. 

9.2. The Method of Multiple Scales 

To determine an approximate solution to (9.4) free of secular and small-
divisor terms, we need to distinguish between secondary and primary resonances. 
They are treated separatelyTeglnmng with secondary resonances. 

9.2.1. SECONDARY RESONANCES 
In this case co is away from 1 and small divisors first appear at 0 ( f ) . Wc 

introduce a slow scale T.x = et in addition to the last scale V'0 *• / so that the 
derivatives are transformed according to 

d 
— = D0 + eDi + ••• 
dt 
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or 

u0 = A (Tx )eiT» + AeioJ T° + cc (9.24) 

where 

Then, (9.22) becomes 

D2
0ux + u, = -2i(A' +vA)eiT* + 2i(A' + pA)e~iro - 2ivcoAeiLiT° 

+ 2incoAe-iu}To - [AeiTo + A e ' " r ° +Ae~iT<> + A e _ / w r < > ] 3 

d2 

•^2- = £ ) 0 + 2eD 0 D 1 +• • • 

where Dn
 md/dTn. Since t appears explicitly in the governing equation, the 

question arises as to whether it should be represented in terms of 7'0 or Tx. To 
answer this question, we check whether the dependence on t is fast or slow. In 
this case, we check cos cot. If co is away from zero, cos cot is fast varying, and 
we write 

cos cot = cos COTQ (9-17) 

That is, t is represented in terms of T0. On the other hand, if co « 0, cos cof is 
slowly varying. In this case, we write co = eo, where o = 0(1) to exhibit explicitly 
the smaliness of co. Then, 

cos cot = cos oet = cos oTx (9.18) 

Thus, t is represented in terms of T\. Consequently, the case co^O appears 
to require an independent treatment. 

If co is away from zero, (9.4) is transformed into 

Diu + 2eD0Dxu + 2epD0u + • • • + u + ew3 = FcoscoT0 (9.19) 

We seek an approximate solution to (9.19) in the form 

u = u0(T0, Tx) + eux(T0, Tx) + • • (9.20) 

Substituting (9.20) into (9.19) and equating coefficients of like powers of e, 
we obtain 

DIUQ + u0'= F cos cor 0 (9.21) 

D2
Qux + ux = -2D0Dxu0 - 2fJLD0u0 - u% (9.22) 

The general solution of (9.21) can be expressed as 

M 0 = a(Tx) cos [T0 + 0(TX)] + 2A cos cor0 (9.23) 
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or 

Dlui + ux = - [2/04' + fiA) + 3(AA + 2A2) J4]e* T«> - (2//ico + 6>L4 

+ 3 A 2 ) A e ' " r ° ~ / l V ' r o - A 3 e 3 , w r « > - 3 ^ 2 A e ' < 2 + w > r -

- 3 j 2 A e ' ^ - 2 > ' r « » - 3AA2e*1*2">T» - 3AA2e*1 ~2^T° 

+ cc (926) 

As mentioned in the preceding section, the particular solution of (9.26) contains 
secular terms and small-divisor terms when co « 3, 3 , and 0. These cases need 
to be considered separately. 

The Case co 3. To express the nearness of co to 3, we introduce a detuning 
parameter a = 0 (1 ) defined by 

co = 3 + ea (9.27) 

Substituting (9.27) into (9.26) gives 

Dlux +ux=-[2iA' + 2ifjA +3A2A+ 6AA2] eiT° - A3e3iT° - (2/pco + 6AA 

+ 3A2)Ae3iT° + ioeT<> - A3e*iT0*3io&9 _ 3A2AesiT0 + ioeT0 

- 3A2AeiT**iaeT< - 3AA2e7/r» + 2iaeT° 

- 3A A2e-$iT° ~ 2k3€T° + cc (9 2 8 ) 

Although 7*0 is a fast scale, the combination eT0 is slow, and it should be 
expressed in terms of the slow scale. That is, Tx = eT 0 . Then, (928 ) can be 
written as 

Dlux + M , = - [2L4' + 2ifiA +3A2A + 6AA2)eiT* - [A3 + (2iy.co + 6AA 

+ 3A2)AeiaT*]e3iT' - A3e3iaT>e9iT° - 3A2AeiaT>esiT° 

- 3A2AekjT>eiT* - 3AA2e2iaT>e7iT<> - 3AA2e-2k>T*e-5iT<> + cc 

(9.29) 

We note that this introduction of the detuning parameter as in (9.27) resulted 
in the conversion of the term 

-3,42 A exp [/(co - 2)T0] 

which leads to a small-divisor term in the straightforward expansion to 

-3A2A exp (ioTx) exp (zT 0 ) 

which leads to a secular term on the scale T0. This is the approach we always use 
to deal with terms that lead to small-divisor terms. That is, we use detuning 
parameters to transform them into terms that lead to secular terms. 

Eliminating the secular terms from u, ,we obtain from (9.29) that 
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2iA' + 2ipA + 3A 2A + 6AA2 + 3A2AeiaT* = 0 (9.30) 

We should note that one does not need to write all the terms in (9.28) and 
(9.29). One needs only to write the terms that produce secular terms and the 
terms that produce small divisors. As before, we introduce the polar notation 
(9.25) at this stage. The result is 

ia'e® - ape® + ipaeip + f a V * + 3aA V * 3 + f a 2 A e ' < ° r ' " 2 « = 0 (9.31) 

Before separating (9.31) into real and imaginary parts, we multiply it by exp (-i0) 
so that a and 0' will not have an exponential multiplicative factor. This simplifies 
the resulting equations. Thus, multiplying (9.31) by exp (-i0) gives 

ia' - a0' + ipa + f a 3 + 3aA2 + | a 2 A e ' < a r ' ~3 f f> = 0 (9.32) 

Consequently, there is only one term that contains an exponential factor. Since 

e19 = cos 6 + / sin 9 

we write (9.32) as 

ia - a0' + im + |a 3 + 3aA2 + |a 2 A[cos (oTx - 30) + i sin (oTx - 30)] = 0 

or 

i[a + \xa + |a 2 A sin (o7\ - 30)] - a0' + |a 3 + 3aA2 + |a 2 A cos (pTx - 30) = 0 

(9.33) 

Since a complex number vanishes if and only if its real and imaginary parts vanish 
independently, (9.33) implies that 

a = -pa - | a2 A sin (oTx - 30) (9 34) 

a0' = 3aA2 + f a 3 + f a 2 A cos (oTx - 30) (9.35) 

These are the desired equations that describe the modulation of the amplitude 
and the phase of the free-oscillation term. 

Substituting (9.23) into (920 ) and recalling that T0 - t gives 

u = acos ( f + 0 )+ 2A cos cof + 0 ( e ) (9.36) 

where a and 0 are given by (9.34) and (9.35). Since Tx appears explicitly in 
(9.34) and (9.35), they are called a nonautonotnous system. It is convenient to 
eliminate the explicit dependence on 7',, thereby transforming these equations 
into an autonomous system. This can be accomplished by introducing the new 
dependent variable y defined by 

7 = o7, - 30 (9.37) 

Then, 
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y = a - 30' 

Substituting (9.37) into (9.34) yields 

a = -\xa - | a 2 A sin y 

Substituting (9.35) into (9.38) and using (9.37) yields 

(938 ) 

(939 ) 

ay = oa - 9cA 2 - |a 3 - | J 2 A cos y (9.40) 

It follows from (937) that 

B=\oTx - \y = \eat- \y 

Hence, (936 ) can be rewritten as 

u — a cos ( f + \eot - \y) + 2A cos cot + 0(e) 

which in turn can be rewritten as 

u = a cos ( 3 to/ - 3 7 ) + 2A cos cor + 0(e) (9.41) 

on account of (9.27). Thus to the first approximation, u is given by (9.41) where 
a and 7 are given by the autonomous set of equations (939 ) and (9.40). 

Figure 9-1 shows the variation of A and 7 with Tt as calculated by numerically 
integrating equations (9.39) and (9.40). Initially, a and 7 oscillate with Tx, but 
as 7*1 increases a and 7 tend to constant values. There are two possibilities: 
either the steady-state value of a is zero or nonzero. These constant values are 
usually referred to as stationary or steady-state values. When the steady-state 
value of a is nonzero, the free-oscillation term is periodic. We note that in this 
case the frequency of the free-oscillation term is exactly 3 co, that is one third 
of the frequency of the external excitation. Consequently, we speak of such 

Figure 9-1. Variation of a and 7 with t as numerically calculated from (9.39) and (9.40) for 
e = 0.1, A = vA08, n = 0.1, 0 = 1.0, c (0 ) = 1.0, and 7 ( 0 ) = 1-0. 

a 

r. 
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-3/jta = |a 2 A sin y 

aa - 9aA2 - l a 3 = |a 2 A cos 7 
(9.42) 

8 " 4* 

Squaring (9.42), adding the results, and noting that 

sin2 7 +cos 2 7 = 1 (9.43) 

we obtain 

9u2a2 + (o - 9A 2 - ffl2)V = fi«4A2 (9.44) 

It follows from (9.44) that either a = 0 or 

9M2 + (a - 9A2 - la2)2 = f|a 2 A 2 

Hence, 

<** - T(° ~ TAV + m t9^2 + (°' 9A2)21 = 0 <9-45) 
Since (9.45) is quadratic in a 2 , its solutions are 

a1 = I (a - 1}A2) ± I [(a - ^A2)2 - 9n2 - (a - 9 A 2 ) 2 ] ^ 

or 

a2 = |(a - V7A2) ± I [ I A 2 ( 2 a - f A 2 ) - W
2 ] l ' 2 (9.46) 

Equation (9.46) is usually referred to as the frequency-response equation. 
For nontrivial solutions, it follows from (9.46) that both the radical and the 

first term must be positive, that is, 

\A\2a- f A 2 ) > / i 2 a>V7A2 

Thus, for a given a, nontrivial solutions can exist only if 

x ' 2 63A 2 a (a2 \1'2 

< < - + — - 63 
4u p \u2 

These conditions are represented graphically in Figure 9-2. Figure 9-3a shows 
several frequency-response curves, whereas Figure 9-3b shows the variation of 
the amplitude of the free-oscillation term with the amplitude of the excitation. 

We note that although the frequency of the excitation is three times the natural 
frequency of the system, the response is quite large. For example, certain parts 
of an airplane can be violently excited by an engine running at an angular speed 

resonances as subharmonic resonances of one third. In this case, u is periodic, 
that is, the steady-state response is periodic. 

To determine the steady-state response, we need not integrate numerically 
equations (9.39) and (9.40) describing a and y. Instead, we use the fact that a 
and 7 are constants in the steady state, and hence set a' = 0 and y - 0 in (939 ) 
and (9.40). The result is 

file:///A/2a-


Figure 9.3. Steady-state subharmonic response tor the Duffing equation: amplitude of the free-
oscillation term versus (a) detuning and (/.») amplitude of the excitation. 
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Figure 9-3. (cont.) 

that is much larger than their natural frequencies. At one time, the propellers in 
a commercial airplane induced a subharmonic vibration of order \ in the wings, 
which in turn induced a subharmonic of order \ in the rudder. The oscillations 
were so violent that the airplane broke up. 

The Case of co^ \ . To express the nearness of co to \, we introduce a 
detuning parameter o defined by 

3 c o = l + e o (9.47) 

As pointed earlier, we do not need to replace co in all the terms in (926) . We 
need only to replace the terms that produce small-divisor terms. These are the 
terms - A 3 exp ( ±3 / t o r 0 ) . To this end, we write 

3cor0 = (1 + eo)T0 = T0 + oeTo = T0 + oTx (9.48) 

Then, we rewrite (9.26) as 

D\ux + u, = - [2iA' + 2\\xA + 6 A2 A + 3A2A]cIT* - A*eiaT>eiT<> + cc + NST 

(9.49) 

where NST stands for the rest of the terms, which do not produce secular 
terms. Ehminating the secular terms from ux yields 

2/04' + iiA) + 6Al4 + 3A 2 A + A 3 e ' ° r ' = 0 (9.50) 
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At this stage, we introduce the polar transformation (9.25) and rewrite (9.50) as 

tie1* - aB'ei0 + Uwe® + | < i V p + 3A W + A V a r - = 0 (9.51) 

Multiplying (9.51) by exp (-iB) so that only one term contains an exponential 
term, we obtain 

ia' - aB' + ifxa + |tf3 + 3A 2 a + A V < a T ' = 0 

or 

ia' - aB' + iua + f a 3 + 3 A2a + A 3 cos (oT, - B) + /A3 sin (oTx - B) = 0 

(9.52) 

Separating real and imaginary parts in (9.52) gives 

a = -pa - A 3 sin (oTx - B) (9.53) 

aB' = 3A2fl + |a 3 + A 3 cos (oTt - B) (9.54) 

As discussed earlier, we transform (9.53) and (9.54) into an autonomous 
system by introducing the transformation 

7 = a 7 W (9.55) 

Then, 

y' = a-B' (936 ) 

Substituting (9.55) into (9.53) gives 

a = -\m - A 3 sin 7 ( 937 ) 

Substituting (9.54) into (9.56) and using (9.55) yields 

ay = oa - 3A 2 a - f a 3 - A 3 cos 7 (9.58) 

Eliminating B from (9.23) and (9.55) gives 

uQ = a cos (TQ + 07*1 - 7 ) + 2A cos to To 

or 

«o = a cos (t + ear - 7 ) + 2 A cos cor (9.59) 

Substituting (9.59) into (9.20) and using (9.47), we obtain 

u = a cos (3co/ - 7 ) + 2A cos cor + 0 ( e ) (9 .60) 

Thus, to the first approximation u is given by (9.60) where a and 7 are given by 
(9.57) and (9.58). 

Figure 9-4 shows the variation of a and 7 with Tx as calculated by numerically 
integrating equations (9.57) and (9.58). Initially, a and 7 oscillate with Tx, but 
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T, 

Figure 9-4. Variation of a and y with T\ as numerically calculated from (9-57) and (9.58) 
for € = 0.05, a - 0.1, A = 1.0, /i = 0.1, a(0) = 1.1, and 7 ( 0 ) - 2.5. 

as J*, increases, ax and y tend to constant values. As before, these constant values 
are usually referred to as stationary or steady-state values. Equation (9.60) shows 
that the stationary response is periodic. As before, to determine the steady-state 
response, we need not integrate numerically equations (9.57) and (9.58) describ
ing a and 7. Instead, we use the fact that a and 7 are constants in the steady state, 
set a = 0 and y = 0 in (9.57) and (9.58), and obtain 

-pa - A 3 sin 7 (9.61) 

oa - 3A2a - f a 3 = A 3 cos 7 (9.62) 

Squaring (9.61) and (9.62), adding the results, and using (9.43), we obtain 

p2a2 + (a - 3A 2 - f a 2 ) V = A 6 (9.63) 

which is a cubic equation in a 2 . This is usually referred to as the frequency-
response equation. After a is known, 7 can be obtained from either (9.61) or 
(9.62). With a and 7 being constants, the frequency of the free-oscillation term 
is 3co, which is exactly three times the frequency of the external excitation. 
Thus, we speak of such resonances as superharmonic resonances of order three. 

Figure 9-5 shows a representative response curve. The bending of the response 
curve is due to the norilinearity and it is responsible for a jump phenomenon. To 
explain this, we imagine that an experiment is performed in which the frequency 
of the excitation is kept fixed (i.e., o is constant) whereas its amplitude (i.e., 
F or A ) is slowly varied. If an experiment is started at a small value of A cor
responding to point Ay then as A is increased slowly, a slowly increases until 
point B is reached. As A is increased further, a jump from point B to point C 
takes place with an accompanying increase in a, after which a decreases slowly 
with increasing A until point E is reached. Further increases in A produce a 
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A 

Figure 9-5. Jump phenomenon in the superharmonic response of the Duffing equation. 

slow increase in a. If the experiment is started at point E and A is decreased, 
a increases slowly through point C until point D is reached. As A is decreased 
further, a jump from point D to point A takes place with an accompanying 
decrease in a, after which a decreases slowly with decreasing A. We note that 
the broken line cannot be reached by either increasing or decreasing A. Hence, 
this line corresponds to unstable motions. 

The Case co 0. As pointed out earlier, cos cot needs to be expressed in terms 
of 7, as in (9.18). Then, (9.19) becomes 

Dlu + 2eD0Dxu + 2eyDQu + ••• + « + eu3 = F cos oTx (9.64) 

Substituting (9.20) into (9.64) and equating coefficients of like powers of e, 
we obtain 

Dlu0 + u0 - F cos oTt (9.65) 

Dlux + M , = -WQDXUQ - 2/ iD 0 « 0 " "o (9.66) 

The general solution of (9.65) can be expressed as 

«o = AeiT° + Ae~iT° + F cos oT, (9.67) 

Then, (9.66) becomes 

D\ux + M , =-2i(A' + iiA)eiT« + 2/(1 ' + pA)e~iTo 

- [AeiT° + Ae-iT° + F cos oT, ] 3 

Dlux +ux =-2i(A'+ fJLA)eiT° - A V ' r ° - 3A2AeiT° - 3F2 cos2 oTxAeiT» 

or 
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- 3FA2 cosoT, e7iT° - 3FAA cos oTx - J F 3 cos3 oTx + cc (9.68) 

Eliminating the secular terms from u x, we have 

2L4' + 2iuA + 3A2A + 3F2A cos2 oT, = 0 (9.69) 

Expressing A in the polar form (9.25) gives 

ia'ei0 - aB'ei(3 + + |a V * + f F V 3 cos2 a ? ! = 0 

or 

id - aB' + ifia + f a 3 + § F 2 c cos2 oTx = 0 (9.70) 

Separating real and imaginary parts in (9.70) yields 

d = -\m (9.71) 

aB' = f a 3 + \F2a cos2 oT, (9.72) 

It follows from (9.71) that 

a = a0e~^ (9.73) 

where a0 is a constant. Then, it follows from (9.72) that 

B' = f a2,*-2*'7'. + § F 2 cos2 aT*, 

or 

0' = lale'2^ + f F 2 + | F 2 cos 2ar, (9.74) 

which on integration yields 

3 3F 2 

8 = -— ale-2»T> + | F 2 r , + — - sin 2a7/, + B0 (9.75) 
lbu oa 

where B0 is a constant. Substituting (9.67) into (9.20) and using the polar 
representation (9.25), we obtain 

u — a cos (T0 + 8) + F cos oTx + 0(e) (9.76) 

Substituting (9.75) into (9.76), using the fact that T0 - f, 7", = et, and co = ea, 
we rewrite (9.76) as 

u = a0e~mt cos 
3 3eF2 

(1 + \eF2)t - — ale-**' + - f - sin 2co/ + 0 O 

16/u 8 co 

+ F cos cor + 0 ( e ) (9.77) 

We should note that the above solution can be obtained as a special case of the 
general case co away from 1. To this end, we replace co in the last terms in (9.26) 
by ea and obtain 



Dlux + « j = - [2iA' + liuA + 3A2A + 6A2A]eiT° - 3AA2eiT° 

X [e2iT>° + < T 2 / 7 > ] +cc + NST (9.78) 

EUminating the secular terms from (9.78) gives 

2iA' + 2iuA + 3A2A + 6A2A + 6A A2 cos 2oTx = 0 (9.79) 

Since co = ea, it follows from (9.25) that A^\F. Then, (9.79) becomes 

2iA' + 2inA +3A2A+ f F l 4 ( l + cos 2oTx) = 0 

or 

2iA' + 2iuA + 3A2A+ 3F2A cos2 oTx = 0 (9.80) 

in agreement with (9.69). 

9.2.2. PRIMARY RESONANCE 
In this case co « 1, and the small-divisor terms appear initially in the first term 

of the straightforward expansion (9.16). Thus, u0 becomes very large as co 1. 
But then the nonlinear and damping terms become important, and the ordering 
of the terms in (9.6) is rendered invalid. Moreover, the homogeneous and par
ticular solutions merge so that they are indistinguishable from one another. At 
this point, one has a choice. First, one can reorder the nonlinear and damping 
terms so that they will appear at 0 ( e ° ) , thereby balancing the effect of the 
primary-resonance excitation. However, this choice leads to 

u0 + " o + 2/£D0"o + " O ~ FcoscoTo = 0 (9.81) 

which is the original equation. Second, one can reorder the excitation so that it 
appears at 0 ( e ) where the nonlinear and damping terms first appear. This choice 
leads to a linear problem at 0 (e ° ) . This is the approach used in this book, which 
is valid for weakly nonlinear systems. To this end, we let F= ef and rewrite 
(9.4) as 

u + u + 2euti + eu3 = ef cos cor (9.82) 

As co 1, (9.16) shows that the first two terms have approximately the same 
frequency. It turns out that the free-oscillation term a cos (r + |3) merges with 
the forced response F ( l - c o 2 ) - 1 cos cor. This also justifies the reordering in 
(9.82). 

To determine an approximate solution to (9.82), we introduce the scales 
T0 = r and Tx = et and express cos cor as cos coT0. Then as before, (9.82) becomes 

Dlu + 2eDoOiU + 2efiD0u + u + • • - + eu3 - e/cos CJT0 (9.83) 

We seek the solution of (9.83) in the form 

u = u0(To, Tx) + eux(To, Tx) + • • • (9.84) 
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Substituting (9.84) into (9.82) and equating coefficients of like powers of e, 
we obtain 

D7
0un + M 0 = 0 , (9.85) 

Dlux + ux - -2D0Dxu0 - 2nD0u0 - u3
0 + /cos coT0 (9.86) 

The general solution of (9.85) can be expressed as 

u0 =A(Tx)eiTo +A(T1)e-iT> (9.87) 

Then, (9.86) becomes 

Dlux + ux = -2i(A' + nA)eiT° + 2i(A' + nI)e~tT> - (AeiT° + Ae~iT<>)3 

+ {fe^T0 + ife-tu>T0. 

or 

D 0 u , + ux = ~{2iA' + 2inA + 3A2A)eiT° - A3e3iT° + \feiUiT* + cc (9.88) 

Since we are considering the case co * 1, we introduce a detuning parameter 
a defined by 

co = 1 + 60 (9.89) 

Then, 

cor 0 = (1 + eo)T0 = T0 + a e r 0 = 70 + oF, (9.90) 

Substituting (9 50 ) into (9.88) gives 

D\ux + ux = - (2L4 ' + 2//L4 + 3A2A)eiT° - A3e3iT° + \feiaT*eiT° + cc 

(9.91) 

EUminating the secular terms from (9.91) yields 

2iA' + 2ifiA + 3A2A - \feiaT^ = 0 (9.92) 

Expressing^ in the polar form (9.25), we rewrite (9.92) as 

we' '" - age* + we* + f a 3 * " - \feiaT* = 0 

or 

ia - atf + ina + f a 3 - j / c o s (oTx - 0) - {if sin (pTx - 0) = 0 (9.93) 

Separating real and imaginary parts in (953 ) yields 

a = -\m + j/s in ( o f , - 0) (9.94) 

^ - | a 3 - i / c M ( o T , - 0 ) (9.95) 

As before, we transform (9.94) and (9.95) into an autonomous system by 
introducing the transformation 



THE METHOD OF MULTIPLE SCALES 207 

7 = 07*, ~B (9.96) 

whence 

7 = o ~ / 3 ' (9.97) 

Substituting (9.96) into (9.94) gives 

a = -ua + jf sin y (9.98) 

Substituting (9.95) into (9.97) and using (996), we obtain 

Substituting the polar form (9.25) into (9.87) yields 

u0 = a cos (7*0 + B) 

Then, it follows from (9.84) that 

u=a cos (7*o + B) + 0 ( e ) 

Since 0 = or , - y from (9.96) and 7*0 = r and 7", = et, 

on account of (9.89). 
Figure 9-6 shows the variation of a and y with 7*, as calculated by numerically 

integrating equations (9.98) and (9.99). Initially, a and 7 oscillate, but as 7*, 
increases a and 7 tend to constant values which are called stationary steady-state 
values. Then, it follows from (9.100) that the steady-state motion is periodic 
with the frequency co. To determine the steady-state motion, we need not 
integrate numerically (9.98) and (9.99) for long times. Instead, we use the fact 
that a and 7 are constants, set a' = 0 and y = 0, and find from (9.98) and (9.99) 
that 

Squaring (9.101) and (9.102), adding the results, and using (9.43), we obtain 

ay = oa~ |a 3 + |/cos 7 (9.99) 

u = a cos (cor - 7 ) + 0 ( e ) (9.100) 

fia = \f sin 7 

-oa + | c 3 = ^/cos 7 

(9.101) 

(9.102) 

a 

•T, 

Figure 9-6. Variation of a and y with 7, as numerically calculated from (9.98) and (9.99) 
for e = 0.5, a = 0.05, / = 0.5, ^ = 0.1, a(0) = 1.1, and 7 ( 0 ) = 0.5. 



u V + (a - | a 2 ) V = - 4/ 2 (9.103) 

which is a cubic equation in a 2 . It is usually called the frequency-response 
equation. 

Figure 9-7 shows a representative curve, called a frequency-response curve, 
for the variation of a with a. The bending of the frequency -response curve is 
responsible for a jump phenomenon. To explain this, we imagine that an ex
periment is performed in which the amplitude of the excitation is held fixed, 
the frequency of the excitation (i.e., a) is very slowly varied up and down 
through the linear natural frequency, and the amplitude of the harmonic response 
is observed. The experiment is started at a frequency corresponding to point 1 
on the curve in Figure 9-7. As the frequency is reduced, a decreases and a slowly 
increases through point 2 until point 3 is reached. As o is decreased further, a 
jump from point 3 to point 4 takes place with an accompanying increase in a, 
after which a decreases slowly with decreasing a. If the experiment is started at 
point 5 and a is increased, a increases slowly through point 4 until point 6 is 
reached. As a is increased further, a jump from point 6 to point 2 takes place 
with an accompanying decrease in a, after which a decreases slowly with increas
ing o. The maximum amplitude corresponding to point 6 is attainable only when 
approached from a lower frequency. The portion of the response curve between 
points 3 and 6 is unstable, and hence, cannot be produced experimentally. 

If the experiment is performed with the frequency of the excitation co held 
fixed while the amplitude of the excitation is varied slowly, a similar jump 
phenomenon can be observed. Suppose that the experiment is started at point 1 
in Figure 9-8. As / is increased, a slowly increases through point 2 to point 3. 
As / is increased further, a jump takes place from point 3 to point 4, with an 
accompanying increase in a, after which a increases slowly with/. If the process 
is reversed, a decreases slowly as / decreases from point 5 to point 6. As/is 
decreased further, a jump from point 6 to point 2 takes place, with an accom
panying decrease in a, after which a decreases slowly with decreasing /. 



f 

Figure 9-8. Jump phenomena for primary resonance of the Duffing equation. 

9.3. The Method of Averaging 

To apply the method of averaging to this problem, we need to treat secondary 
and primary resonances independently. We begin with secondary resonances. 

9.3.1. SECONDARY RESONANCES 
The first step in applying the method of averaging is the use of the method of 

variation of parameters to change the dependent variable u to the two dependent 
variables—the amplitude and phase of the free-oscillation term. To accomplish 
this, we note that when e = 0 the general solution of (9.4) is 

where a and B are constants and A is defined in (9.12). Differentiating (9.104) 
with respect to t yields 

When e 0, we still represent the solution in the form (9.104) subject to the 
constraint (9.105) but with time-varying rather than constant a and 6. Differen
tiating (9.104) with respect to t gives 

u - a cos (r + B) + 2A cos cor (9.104) 

u = -a sin (r + B) - 2Aco sin cor (9.105) 

u = -a sin (t + 3) + a cos (r + B) - aB sin (r + B) - 2 Aco sin cor 

Comparing (9.105) with (9.106), we find that 

(9.106) 

a cos (r +13) - a|5! sin (r + B) = 0 (9.107) 

Differentiating (9.105) with respect to t gives 

ii = -a cos (r + B) d sin (t + B) - aB' cos (r + B) - 2Aco2 cos cot 

Substituting (9.104), (9.105), and (9.108) into (9.4) yields 

-a cos (r + B) - a sin (r + B) - a|3 cos (r + B) - 2Aco2 cos cor 

(9.108) 
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- 2ejua sin (t + 0) - 4eucoA sin cor + a cos (t + 0) + 2A cos cor 

+ e [a cos (f + 0) + 2A cos cor] 3 = F cos cor (9.109) 

Since 2 A - ( 1 co 2 ) " 1 F according to (9.12), (9.109) reduces to 

a sin (r + 0) + a0 cos (r + 0) = - 2ep[a sin (r + 0) + 2coA sin cor] 

+ e [acos(r + 0) + 2Acoscor ] 3 (9.110) 

Multiplying (9.107) by cos (r + 0) and (9.110) by sin (r + 0) and adding the 
results, we obtain 

a = -leu sin (r + 0) [a sin (r + 0) + 2coA sin cor] + e sin (r + 0) 

X [a cos (r + 0) + 2A cos cor] 3 (9.111) 

Substituting (9.111) into (9.107) and solving for a0 yields 

a0 = -2eu cos (r + 0) [a sin (r + 0) + 2coA sin cor] + e cos (r + 0) 

X [a cos (r + 0) + 2A cos cor] 3 (9.112) 

Thus, the problem is transformed into solving (9.111) and (9.112) in place of 
(9.4). 

Expanding the cubic term, we rewrite (9.111) and (9.112) as 

a = -ley. sin (r + 0) [a sin (r + 0) + 2coA sin cor] + e sin (r + 0) 

X [a3 cos3 (r + 0) + 6a2A cos2 (r + 0) cos cor + 12aA2 cos (r + 0) 

X cos2 cor + 8A 3 cos3 cor] (9.113) 

o0 = -2ep cos (r + 0) [a sin (r + 0) + 2coA sin cor] + e cos (r + 0) 

X [a3 cos3 (r + 0) + 6a2A cos2 (r + 0) cos cor + 1 2 M 2 cos (r + 0) 

X cos2 cor + 8A 3 cos3 cor] (9.114) 

Using trigonometric identities (Appendix A ) , we rewrite (9.113) and (9.114) as 

a = e {-pa + pa cos (2r + 20) - 2copA cos [(1 - co)r + 0] + 2copA 

X cos [(1 + co)r + 0] + (±a3 + 3 M 2 ) sin (2r + 20) + ±a3 sin (4r + 40) 

+ (|a2A + 3 A 3 ) sin [(1 + co)r + 0] + (|a 2 A + 3 A 3 ) sin [(1 - co)r + 0] 

+ la2A sin [(3 + co)r + 30] + f a2A sin [(3 - co)r + 30] 

+ f aA 2 sin [(2 + 2co)r + 20] + \aA2 sin [(2 - 2co)r + 20] 

+ A 3 sin [(1 + 3co)r + 0] + A 3 sin [(1 - 3co)r + 0] } (9.115) 

a0 = e {-pa sin (2r + 20) - 2couA sin [(co + l)r + 0] - 2COJUA 

X sin [(co - l )r - 0] + |a 3 + 3flA2 + ({a3 + 3aA 2 ) cos (It + 20) 
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+ |a 3 cos (4/ + 4/3) + (la2A + 3 A 3 ) cos [(1 + co)/ + 0 ] 

+ ( f a 2 A + 3 A 3 ) cos [(1 - co)f + 0] + | a 2 A cos [(3 + to)/ + 3/3) 

+ |a 2 A cos [(3 - to)/ + 3/3] + f aA 2 cos [(2 + 2co)/ + 2/3] 

+ \aA2 cos [(2 ~ 2co)/ + 20] + 3aA2 cos loot 

+ A 3 cos [(1 + 3to)/ + B) + A 3 cos [(1 - 3co)/ + 0 ] } (9.116) 

To the first approximation, we need to keep the slowly varying parts in (9.115) 
and (9.116). The terms -epa and e ( | f l 3 + 3aA 2 ) do not depend on the value of 
co, whereas others depend on the value of co. A term is a slow varying term 
whenever the coefficient of / (i.e., the frequency) is small. Inspecting (9.115) 
and (9.116), we conclude that slowly varying terms occur when co « 0 ,1 ,3 , and 
\. The case co <=» 1 should be excluded because u0 has a small divisor. This case 
is treated in Section 9.3.2. Next, the other cases are treated separately. 

The Case co away from 0, 3, and 3 . In this case, the only slowly varying 
terms are the terms that are independent of t. Thus, it follows from (9.115) 
and (9.116) that 

d = -ena (9.117) 

a0 = f a z 3 +3eaA 2 (9.118) 
Hence 

— o ^ ' (9.119) 

0 = -4-<2oe~2eMf + 3eA 2 f + 0o 
16^ 

where a0 and 0 O are constants. 

The Case co « 3. In this case, sin [(3 - co)/ + 30] in (9.115) and cos [(3 -
co)/ + 30] in (9.116) are slowly varying terms. Hence, 

a * -e\xa + \ea2A sin [(3 - co)/ + 30] (9.120) 

aB' = |ea3 + 3ecA2 + |ea 2 A cos [(3 - co)/ + 30] (9.121) 

which are in agreement with (9.34) and (9.35) obtained by using the method of 
multiple scales since 3 - co = -eo. 

The Case c o * \ . In this case, sin [(1 - 3co)/ + 0 ] in (9.115) and cos [(1 -
3co)/ + 0 ] in (9.116) are slowly varying terms. Hence, 

fl = -€]L/fl+eA3 sin [(1 - 3co)/ + 0 ] (9.122) 

43 = f a r 3 + 3eaA2 + e.A3 cos [(1 - 3co)/ + 0 ] (9.123) 

which are in agreement with (9.53) and (9.54) obtained by using the method of 
multiple scales since 3co - 1 = eo. 
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The Case co * 0. In this case, there are no slowly varying terms in (9.115), 
while cos 2cof in (9.116) is a slowly varying term. Hence, 

c--e/ifl (9.124) 

aj} = |ea 3 + 3eaA2 + 3eaA2 cos 2tof (9.125) 

which are in agreement with (9.71) and (9.72) obtained by using the method 
of multiple scales since co = eo and A * \F. 

9.3.2. PRIMARY RESONANCE 

When e = 0, the general solution of (9.82) can be expressed as 

u = a cos (r + 0) (9.126) 

where a and 0 are constants. Then, 

u = -a sin (r + 0) (9.127) 

When 0, we still represent the solution by (9.126) subject to the constraint 
(9.127) but with time varying rather than constant a and 0. Differentiating 
(9.126) with respect to t yields 

u = -a sin (r + 0) + a cos (r + 0) - a0 sin (r + 0) (9.128) 

It follows from (9.127) and (9.128) that 

<icos(r + 0)~f l0sin(r + 0) = O (9.129) 

Differentiating (9.127) with respect to t yields 

u = -a cos (r + 0) ' - a sin (f + 0) - 00 cos (r + 0) (9.130) 

Substituting (9.126), (9.127), and (9.130) into (9.82), we obtain 

a sin (r + 0) + a0 cos (r + 0) = -2e\xa sin (r + 0) + ea3 cos3 (r + 0) 

- e/cos to/ (9.131) 

Solving (9.129) and (9.131) for a and 00 yields 

a = -2eua sin2 (t + 0) + e<z3 sin (r + 0) cos3 (r + 0) 

- e/sin(f + 0) cos cor (9.132) 

a0 = -2eua sin (r + 0) cos (r + 0) + ea3 cos4 (r + 0) 

- ef cos (r + 0) cos to/ (9.133) 

Using trigonometric identities (Appendix A ) , we rewrite (9.132) and (9.133) as 

a - - epa + e/iff cos (2r + 20) + \ ea3 sin (2r + 20) + -| ear3 sin (4r + 40) 

- je/sin [(1 + c o ) r + 0] - ±efsin [(1 - co )r + 0] (9.134) 



afc = -efia sin (2/ + 23) + f « 7 3 + \ea3 cos (2/ + 28) + \ea3 cos (4/ + 48) 

- \e/cos [ (1 + co)/ + 0 ] - | e/cos [(1 - co)/ + 0 ] (9.135) 

To the first approximation, we need to keep only the slowly varying terms on 
the right-hand sides of (9.134) and (9.135). For a primary resonance, co 1 and 
sin [(1 - co)/ + 8] in (9.134) and cos [(1 - co)/ + 8] in (9.135) are slowly varying 
terms. Hence, 

a = -euta - ^e/sin [(1 - co)/ + 8) (9.136) 

* 0 = f ea3 - je/cos [(1 - co)/ + 0 ] (9.137) 

which are in agreement with (9.94) and (9.95) obtained by using the method of 
multiple scales since 1 - co = - ea. 

Exercises 

9.1. The response of a system with quadratic nonlinearities to a sinusoidal 
excitation is governed by 

u + COQU = ~2e(jiu - eocu2 + K cos S2r 

(a) Use the method of multiple scales to show that 

u 0 =Aeiu>°T* + AeinT° + cc. 

Dluy +co^u, =-2ico0C4' + (iA)eioi<>T° - 2ivA£leiSlT° 

- a{A2e2ioj°T* + A2e2inT* +AA+A2 

+ 2 J A e / ( " - w » > r o + 2AAe^n^o)T0^+cc 

What is A? 

(b) When 2ft = co0 + ea, show that 

2iO30(A ' + uA) + <*A V ° r ' = 0 
Solve for A and then determine the steady-state solution. 

(c) When ft = 2co0 + ea show that 

ico0(A' + nA) + otAAeiaTt = 0 

Solve for A. Determine the conditions under which A is unbounded. 

9.2. Consider 

ii + coJm ~ c(u \ j i 3 ) + rk cos Sit 

When ft - co0 + eo, use the methods ot multiple scales and averaging to show that 

u = a cos (co0r + 8) + • 
where 
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9.3. Consider 

ek 
a0 cos (eor - 0) 

2co0 

u + coo" - €(ii - i i i 3 ) + K cos S2r 3' 

where £2 is away from 3co0, 3C00, and 0. Use the methods of multiple scales and 
averaging to show that 

u~ a cos (co0r + 0) - ~^ 2 c o s + 

Q,2 - cog 

where 

fl = j€(v~ icoga 2 )a 0 = 0 

Determine 17. 
9.4. Consider 

u + COQM = e ( « - 3 U 3 ) + K cos £2r 

when 3fi = co0 + ea. Use the methods of multiple scales and averaging to show 
that 

K 
u = a cos (co0f + p) - zri 7 cos izr + - • * 

I T - cog 

where 

a = je(7? - ^cooa2)a + €rcos(eat - B) 

a0 = e r sin (eat - 0) 

Determine n and T. 
9.5. Consider 

u + colu ~ e(ii - \u*) + K cos J2r 

when fi - 3co0 + ea. Use the methods of multiple scales and averaging to show 
that 

K_ 

H 2 - cog 

where 

a = \ e(rj- \cola2)a + ^eco0&z2 cos (eat - 30) 

a0 = ietoo&i2 sin (eat - 30) 

u — a cos (co0r + 0) - 7 ^ j cos Hr + 

4 

Determine n and £. 

ek 
a = 4e ( l - 4co 0 a 2 )a + sin (eot - 0) 

* 2co„ 
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where 

- 4ea2 

a = + ek sin (ear - p) 

a& = - ek cos (ear - 0 ) 

9 . 7 . Consider 

ii + u + 2eu2u = 2efc cos ftr 

when ft = 1 + eo. Use the methods of multiple scales and averaging to show that 

u = a cos (r + |3) + ' • • 

where 

9 . 8 . Consider 

a = - -| ea3 + eA: sin (ear - /3) 

aB = - ek cos (ear - 6) 

ii + a>ou + eu4 = 2/C cos ftr 

Show that to first-order resonances exist when ft « 4co0, 2a>Q, ifc>o> T ^ O . 0, 
|co 0 > and -§OJ0- Use the methods of multiple scales and averaging to determine 
the equations describing the amplitude and phase for each case. 

9 . 6 . Consider 

it + u = - eu\u\ + 2ek cos ftr 

when ft = 1 + ea. Use the methods of multiple scales and averaging to show that 

u ~ a cos (t + (3) + • ' ' 



CHAPTER 10 

Multifrequency Excitations 

Whereas the preceding chapter deals with a single-frequency excitation, this 
chapter deals with multifrequency excitations. To minimize the algebraic manip
ulation, we consider a system with a quadratic nonlinearity under the influence 
of a two-frequency excitation. Thus, we consider the equation 

where v is a constant phase and the Fn and co„ are constants. As before, we first 
determine a straightforward expansion and investigate its uniformity to exhibit 
the small divisors and hence the possible resonances. In Section 10.2, we use the 
method of multiple scales to determine uniform first-order expansions for some 
of these resonances. Finally in Section 10.3, we treat these resonances by using 
the first approximation of the method of averaging. 

10.1. The Straightforward Expansion 

We seek a first-order (two-term) expansion for u in powers of e in the form 

Substituting (10.2) into (10.1), we have 

w0 + € « ! + ••• + w0
 + £"i + • ' ' + 2e/j(«0 + • • •) + <K"o + ' ' f 

= F , cos co,f + F 2 cos (co2f + v) 

or 

u 0 + w0 + e(ui + w, + 2nu0 + Wo) + • • • = F , cos co, / + F 2 cos (co2r + v) (10.3) 

Equating the coefficients of like powers of e on both sides, we obtain 

w + w + 2euw + ew2 = Fx cos toxt + F 2 cos (co 2 1- + v) (10.1) 

w(r;e) = w o (0 + ew,(r) + • • • (10.2) 

uo + "o = c o s co, / + F 2 cos (to2/ + v) 

w, +w, = -2uw 0 - Wo 

(10.4) 

(10.5) 
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The general solution of (10.4) can be obtained as in Section 9.1 or Appendix 

Bto be 

M 0 = acos(/ + /3) + 2A, costo,/ + 2A 2 cos(a;2r + »') (10.6) 

where a and j3 are constants and 

A„ = \ (1 - colYxFn 

Then, (10.5) becomes 

Wi + « , = 2n[a sin (/ + B) + 2A,co, sin co,/ + 2A 2 co 2 sin (co2/ + y ) ] 

- [acos(/ + /3) + 2A, cos co,/+ 2A 2 cos (co2/+ i>)] 2 

or 

ii, + w, = 2t/[flr sin (t + B) + 2A,co, sin co,/ + 2A 2 co 2 sin (co2/ + v)] 

- a2 cos2 (/ + 8) - 4A 2 cos2 co, / - 4A 2 cos2 (co2/ + P) 

- 4aA, cos (/ + B) cos co, / - 4 A A 2 cos (r + 0 ) cos (co2/ + v) 

- 8A, A 2 cos co,/cos (co2/ + v) (10.7) 

Using trigonometric identities, we rewrite (10.7) as 

«,+«,= 2n[a sin (/ + B) + 2A,co, sin co,/ + 2A 2 co 2 sin (co2/ + v)] 

- ( i a 2 + 2A 2 + 2A l ) - \ a2 cos (2/ + 2/3) - 2A 2 cos 2co,/ 

- 2Al cos (2co2/ + 2v) - 2aA, cos [1 + co,)/ + B] 

- 2cA, cos [(1 - co,)/ + B] - 2tfA2 cos [(1 + co2)/ + B + v] 

- 2aA2 cos [(1 - co2)/ + /3 - v] - 4A, A 2 cos [(co, + co2 )/ + v] 

- 4A, A 2 cos [(co2 - co,)/ + v] (10.8) 

As discussed before, we do not include the solution of the homogeneous prob
lem at any order except the first. Then a particular solution of (10.8) is (Sec
tion B.4) 

rt. 4wA,co, 4ttA2co2 

u, = -uat cos (/ + /3) + - — sinco,r + r-sin (co2/ + v) 
co, 1 - co2 

2A 2 

- ( i a2 + 2A 2 + 2A l ) + I a2 cos (2/ + 2/3) - - — ^ - = - cos 2co,/ 
1 - 4co, 

2Al , 2aA, 
_ c o s (2co^/ + 2v) + 2~ cos [(1 + co,)f t /3J 

1 - 4co?, v ' 7 2co, + co, 

2* A, r , , , 2aA2 

j cos [(1 - co,)/ + /3] + - — y c o s [(1 +co2)t + B + i>) 
ZCO, - CO, /CO2 + CO2 
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2a A i 

2 co 2 - co 2 

4 A , A 2 

cos [(1 - co2)/ + 0 - v] 

1 - (co, + co2) 

4 A , A 2 

cos [(co2 - C O , ) / + (10.9) 
1 - (co2 - cu,) 2 

Substituting (10.6) and (10.9) into (10.2) and using the definition of A„ ,we have 

F\ F2 

u = a cos (/ + 0) + j cos co,/ + — — j cos (co2t + v) 
1 - co 1 - col 

+ € 
2JUF,COI 2uF2co2 . . . 

-pat cos (/ + 0) + - — T ^ - J - sin co,r + 2 2 sin (co2f + ^) 
d - c o ] ) 2 (1 - "IY 

i f l 2 —TT- - 2 - T 7 + 7 ; a 2 cos (2 f+ 20) 
2 2(1 • co 2 ) 2 2(1 - col ) 2 6 

.-2 

2(1 - co?)2(l -4co?) 

oF, 

( 1 - co?)(2co, + to 2 ) 

aF, 

0 - co?)(2coj - c o 2 ) 

c o s 2 w ' ' - 2 ( l - w l ) > ( l - 4 w l ) c o s ( 2 ' ° J ' + 2 ' ' ) 

cos [(1 + co,)r + 0] 

2-cos 1(1 - w , ) r + |8] + 
(1 - col)(2co2 + col) 

X cos [(1 + to2)t +0 + -

F , F 2 

aF-> 

( 1 - « ? ) [ ! - ( w , + w a ) 2 ] ^ 
( 1 - w ? ) ( l - w ? ) I l - ( w a - w , ) 2 ] 

(1 - co2)(2co2 - co2) 

cos [(co, + co2)f + u] 

cos [(1 - co2)/ + 0 + v] 

cos [(co2 - C O , ) / + J>] 

(10.10) 

Equation (10.10) shows that small divisors occur when co, « 1, co, ^ |.co, 
2, co2 * 1, co2 « I, co2 « 2, co2 + co, « 1, and co2 - co, = 1. Since small divisors 
occur in the first term when co, * 1 or co2 1, these are called primary or main 
resonances. All other resonances are called secondary resonances because their 
corresponding small divisors do not appear in the first term. The cases co, { 
and co2 { are called superharmonic resonances of order 2 because they excite 
a free-oscillation term having the frequency 1 which is approximately 2co, or 
2co2. The cases co, « 2 and co2 2 are called subharmonic resonances of order 
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j because they excite a free-oscillation term having the frequency 1 which is 
approximately \cox or \co2. The case co2 + cox

 8 5 1 is called a combination 
resonance of the summed type, whereas the case co2 - cox ̂  1 is called a com
bination resonance of the difference type. In the next section, we show how the 
method of multiple scales can be used to determine uniform expansions for 
secondary resonances. The main resonances can be treated as in the preceding 
chapter. 

10.2. The Method of Multiple Scales 

To first order, we need the slow scale Tx = et in addition to the fast scale 
T0 = /. Then, 

-^ = £>0 + eD, + •• • 
dt 

d2 

^ 2 - = D 0 + 2 e D 0 £ > 1 + - -

where Dn -dldTn. Hence, (10.1) becomes 

D\u + 2eD0Dxu + • • • + « + 2ep.(DQu + eDxu + • • •) + eu2 

- F X cos cox T0 + F 2 cos (co2 T0 +i>) (10.11) 

We seek an approximate solution to (10.11) in the form 

u = K 0 (7o , Tx) + eux(To, r,) + • • • (10.12) 

Substituting (10.12) into (10.11) and equating coefficients of like powers of 
e, we obtain 

D%UQ + u Q = F X cos co x T0 + F 2 cos (co2 T0 + v) (10.13) 

D%ux + w, = - 2D0Dxu0 - 2pD0u0 - « o (10.14) 

The general solution of (10.13) is written in the following complex form: 

uQ = A(Tx)elT° +I(r,)e*"'T» + A,e / W , r < » + A j <T / w ' r ° + A 2 e , u , ' r < » + A2c"**'» 7 '« 

(10.15) 

where 

2(1 - to?) 2(1 - co$) 

Then, (10.14) becomes 

D2
0ux + « , = -2/ (A ' +M/4)e'T° - 2//iw1A,e / u , ' : r » - 2iuco2A3e' w ' : r<> 
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- A V T ° - A 2 e - 2 / w ' r o - Ale2i">T° - AA~ A? - A 2 A 2 

- 2AA1e^*U}^ - 2/1 A . e ' ^ - ^ ^ - 2AA2ei<1 + "JT> 

- 2AA2e^~U}^ - 2A 1 A 2 e ' ' ( u '> + a , ' > r ° - 2 A 2 A , e « w > - " ^ +cc 

(10.17) 

As in the preceding section, the particular solutions of uv contain secular and 
small-divisor terms. For a uniform expansion, these secular and small-divisor 
terms must be eliminated by proper choices of A. These choices depend on the 
type of resonances present. Next, we treat the two cases: (a) co, + co2 «s l,and 
(b) co2 - co, « 1 and co, 2. 

10.2.1. THE CASE co2 + co, « 1 
In this case, we assume that co2 + co, « 1 and no other resonances exist to 

first order. To describe quantitatively the nearness of co2 + co, to l 4 w e intro
duce the detuning parameter a defined by 

co2 + co, = 1 + ea (10.18) 

In this case, the only terms in (10.17) that lead to small-divisor terms are 
- 2 A , A 2 exp [/(co2 + co 1 )7 ,

0 ] and its complex conjugate. Using (10.18), we re
write this term as 

- 2 A , A a « « w " + w ' > r - — 2 A 1 A a e * 1 + w » r « = - 2 A 1 A 2 e l T ° + / o r ' 

Then, we rewrite (10.17) as 

D%ux + w, =-2/(/4' + M ) e ' T » - 2A,A2<>,'CTVT« + cc + NST (10.19) 

where NST stands for terms that do not produce secular terms in ux. Eliminating 
the secular terms from (10.19) demands that 

2i(A'+ nA) + 2AlA2eiaT> = 0 

or 

A' + p.A = / A , A 2 e / o r ' (10.20) 

In this case, we can Fmd the exact solution of (10.20) because it is a linear in-
homogeneous equation. Thus, we do not need to express A in its polar form. 
The homogeneous solution is 

/t=c<T" r ' (10.21) 

where c is a complex constant. Since the inhomogeneous term in (10.20) is ex
ponential, its corresponding particular solution can be sought in the form 

A = beiaTi (10.22) 



Substituting (10.22) into (10.20) gives 

iobeiaT* +nbeiaT> = / A , A 2 e / o r ' 

or 

iab + nb = /A,A 2 

Hence, 

i . / A » A 2 0 = 

H + io 
Then, the general solution of (10.20) is 

A=ce-*T,+iAl*LeioTt 

H + ia 
(10.23) 

Substituting for A into (10.15) and then substituting the result into (10.12), 
we obtain 

u = ce -ent. 
i A , A 

u + ia 
eh + A , e ' w ' f + A2e™** + cc + 0(e) (10.24) 

We express c in the polar form \ a0 exp (iB0) and substitute for the A„ from 
(10.16) into (10.24). The result is 

iFxF2 

4 0 + m ) ( l - c o ? ) ( l - c o i ) 

F2 

+ ea)t+ iv 
•ei^t+vUcc + 0(e) 

2 ( 1 - c o ? ) " ' 2 ( 1 - c o l ) 

We note that 1 + ea = co, + co2 according to (10.18) and that 

1 = 1 0~i tan"' (aIn) 

(10.25) 

M + io y/u2 + a7 

Hence, we rewrite (10.25) as 

u =a0e~mt cos ( f+ /30)- FyF2 
2(1 - co 2 ) ( l - col )V? 

——^sin i 
+ o 2 

(C0j + co2 )/ 

+ v - tan 1 -
F F 

+ - — ^ - t c o s co,f + - — ^ - c o s (co2r + v) + 0 ( e ) (10.26) 
1 - co, 1 - co2 

As / the first term on the tight hand side o f ( I0.2(>) tends to /.cio, and u 
tends to the fol lowing steady-state solution 

FyF2 
2(1 - co?)(l - col)Vm2 + o1 

sm (co, + co2)r + v - tan - 1 — 
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F F 
+ ^TCOS CO]/ + ^-rcos (co2f + v) + 0 ( e ) (10.27) 

1 - co , 1 ~ co2 

10.2.2. THE CASE co2 - co, * 1 AND co, * 2 
In this case, we assume that two resonances exist simultaneously, namely co2 -

co, 1 and co, ~ 2. In other words, coj 2 and co2 ^ 3. To treat this case, we 
introduce the two detuning parameters 0\ and o 2 defined by 

co, = 2 + €0X co2 = 3 + ea2 (10.28) 

Substituting (10.28) into (10.17), we have 

Dlut + ux = - 2/(4' + M>*)ei T« - 2A 2 Je ' T «> + / € 0 ' r » 

- 2A 2 A , ^ * ^ - ° » ) e r « + cc + NST 

or 

Z ) 2 , ^ + w, =-2/(y4 ' +M^)e,T° - 2A ,Je / 0 >V T ° 

- 2A 2 A i e ' ( o * " °> ) T>e' T« + cc + NST (10.29) 

Eliminating the secular terms from w,, we obtain 

i(A' + fxA) + AiAei0i r ' + A 2 A , e / ( a » ~ ° '> r ' = 0 (10.30) 

Equation (10.30) is an inhomogeneous equation with variable coefficients. We 
first transform it into an inhomogeneous equation with constant coefficients. To 
accomplish this, we introduce the transformation 

A=BeiKT* (1031) 

where X is real and obtain 

i(B' + i\B + vB)eiXT> + A,Zte , ( o ' " A ) r ' + A 2 A , * * 0 * " ° t ) T > = 0 

or 

i(B' + i\B + nB) + Ax~Bei{p* " 2 X ) r ' + A 2 A i e/ ( o> " °' " x ) r > = 0 (1032) 

We choose X = ^ o, so that the coefficients of 2? and J8 are independent of Tt. 
Then, (10.32) becomes 

i(B' + {io1B + nB) + AlB + A2Alei<a*-*a>MTt = 0 (1033) 

Instead of expressing B in polar form as in the preceding chapters, we express 
B in the form 

B=Br + iBi (1034) 

It turns out that the resulting equations are easier to solve in this form than 
those resulting from using the polar form. Substituting (1034) into (1033) and 
using (10.16) to express A 2 in polar form, we obtain 
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iB'r - B\- \ oxBr - \ iox B, + iuBr - {iBf + A , Br - i\xBt 

+ r cos (oTx + v) + iT sin (oTx + v) = 0 ( 1 0 3 5 ) 

where 

r - * f ^ a = 0 2 " 1 0 1 ( 1 0 3 6 ) 

Separating real and imaginary parts in (1035) yields 

B'r + nBr - (Aj + | Oi)5/ = - r sin ( o r , + v) (1037) 

5,' + uBf ~ (A , - \ ox)Br = T cos (oTx + *0 (1038) 

Since (1037) and (1038) are linear coupled inhomogeneous equations for Br 

and Bj, their general solutions can be obtained as the sum of any particular solu
tion and a general homogeneous solution. The general homogeneous solution can 
be obtained by letting 

B r = V 7 r ' Bi~blelT* (1039) 

Substituting (1039) into (1037) and (1038) and dropping the inhomogeneous 
terms, we obtain 

(yJr[i)br-(_Ax + \ox)bi = 0 (10.40) 

- ( A , - \ ox)br + (y +11)^ = 0 (10.41) 

Thus, we ended up with a system of two linear coupled homogeneous equations. 
Since we are interested in nontrivial solutions for br and bh the determinant of 
the coefficient matrix 7 + M - ( A , + | o , ) 

( A , - i a , ) y + u 

must vanish. Then, 

(7 + u ) 2 - Af + i o ? = 0 (10.42) 

This condition could have been obtained by eliminating either br or bt from 
(10.40) and (10.41). It follows from (10.42) that 

y + H = ± VA2

X-Jo? (10.43) 

Hence, there are two possible values 7, and y2 for 7. They are given by 

7i=-H~ V\l-\o\ 72=-M+ VA\-Ja? (10.44) 

It follows from (10.40) that 



Hence, if 

(10.46) 

(10.47) 

Br = ble7tT> + b2ey*T> 

it follows from (10.45) that 

' A . + J g ! A , + ±a, 
where 6, and 6 2 are arbitrary constants. 

A particular solution for (10.37) and (1038) can be obtained by using the 
method of undetermined coefficients. Since the inhomogeneous terms consist 
of circular functions and the homogeneous problem has constant coefficients, 
we seek a particular solution in the form 

Br = c, cos (oTx + v) + c2 sin (oTx + v) (10.48) 

Bi = c 3 cos (oTx + v) + cA sin (oT, + v) (10.49) 

Substituting (10.48) and (10.49) into (10.37) and (10.38) and equating the co
efficients of cos (oTi + v) and sin (oT, + v) on both sides, we obtain 

Ate, + oc2 - (Ax + \ ox)c3 = 0 

- aci + pc2 - (A , + \ ox)cA - - T 

- (Ai - \ ax)ci + nc3 + oc 4 = f 

" ( A i - \ ox)c2 - ac3 +pc4 = 0 

(10.50) 

(10.51) 

(10.52) 

(10.53) 

Using Cramer's rule, we find that the solution of (10.50) through (10.53) is 

Ct = -

c2 = 

0 

- r 
r 
o 

-a 
(A i - | a,) 

- a 
" ( A , - ia,) 

0 

a 
M 
0 

(A|- |a ,) 

0 

- r 
r 
o 

o 
(A i - ia,) 

(A, + io,) 
0 

-a 

(A, + J a,) 
0 

M 

- a 

0 

- r 
r 
o 

o 
( A , + | a , ) 

a 

(10.54) 

0 

(A , + Aa,) 
a 
At 

(10.55) 

0 

' (A i + i a,) 
a 

(10.56) 



where 

A = 

-a 

" ( A , - | a , ) 

0 (A i - * a , ) 

i n t M t i t t u u Ut* M U L T I P L E SCALES Z2S 

- ( A , + i a . ) 

0 

A* 

- a 

0 

- r 

r 

o 

(10.57) 

" ( A , - i a , ) 

0 

0 

( A i - i a , ) 

(A , + ± c , ) 

0 - ( A , + i o , ) 

At a 

- a u 

(10.58) 

Adding the homogeneous solutions (10.46) and (10.47) to the particular solu
tions (10.48) and (10.49) yields the following general solutions for (10.37) and 
(10.38): 

Br = bxe7,r> + b2ey*Tt + c, cos (a7, + v) + c2 sin (oTr + v) (10.59) 

^ = A 7 1 + I M ^ » E 7 , R ' + A 7 2 / I M ^ E 7 I R ' + c 3 c o s ( a r , + ^ ) A , + i a. A , + i a, 

+ c 4 sin ( a r , + v) (10.60) 

It follows from (10.31) and (10.34) and the fact that X = i a, that 

A = (Br + iBi)e(1/2)ia'T> (10.61) 

Substituting (10.61) into (10.15), then substituting the result into (10.12), 
and using (10.16), we have 

u = (Br + iBj)el[l+W2W + (Br-/i5/)e-',1 + <1/2>e a ' , f + - ^ r c o s co,r 
1-co, 

cos (co2f + i>) + 0(e) 
1 - col 

But co, = 2 + ea,, hence 

u = £ r [ e ( 1 / 2 ) i w ' ' + e ~ ( , ' 2 ) i w ' f ] + ,£(.[e0/2)''w>' - c-(i/2)&j l f j 

+ y cos co,r'+ jcos (co2/ + v) + 6>(e) 
1-co] 1 - co^ 

or 

u - 2Br cos i co,r - 2B; sin i co,r + ^-jcos co,r 
1 — CO, 
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10.3. The Method of Averaging 

As before, the first step in the application of this technique is the use of the 
method of variation of parameters to transform the dependent variable from « 
to a and B, where a and B are the amplitude and phase of the free-oscillation 
term. To this end, we note that when e = 0 the solution of (10.1) is 

F F 
u =a cos (r + B) + -——-cos co,f + -—^-rcos (to2r + v) (10.64) 

1 - co, 1 - co2 

where a and B are constants. Hence, 

FttOt F2OJ2 

it=-asm(t + B)- ' - s i n c o i f - - rsin (to2r + v) (10.65) 
1 - co, 1 - to 2 

When e =£0, we still represent the solution by (10.64) subject to the constraint 
(10.65) but with time-varying a and B. 

+ F * , cos (u2t + v) + 0(e) (10.62) 
1 " C02 

Substituting (10.59) and (10.60) into (10.62) gives the following first approxi
m a t i o n : 

u = 2 [ r > , e n > ' + 6 2 e e 7 , f + c, cos (eot + v) + c2 sin (ear + v)] 

X cos i co,r - 2 [ 7 1 bxe^ + A
7 2 * M b2e^ 

+ c 3 cos (ear + f ) + c 4 sin (ear + y) sin \ co,t 
F F 

+ — L - c o s co,r + - — ^ c o s (co2/ + v) + 0 ( e ) (10.63) 
1 - co, 1 - co2 

Equation (10.63) shows that u becomes unbounded in t if the real part of 
either 7 , or y2 is positive. It follows from (10.44) that the real part of 7 , is 
always negative, while the real part of 7 2 is positive if 

A l > | o f and VA\- \ O \ - »>0 

o r 

A\>\o\+n2 

In this case, the free-oscillation terms proportional to cos j co,r and sin | co,r in 
(10.62) tend to infinity as t -* °°. In reality, u does not tend to infinity but the 
free-oscillation term becomes large and we need to carry out the expansion to 
the next order. 
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Differentiating (10.64) with respect to / yields 

u = - a sin (t + 0) + a cos (/ + 0) - «0 sin (/ + 0) 

F | W ( F 2 co 2 . , 
. s i n co,r - ~~ rs in ( t o 2 f + f ) 

I - cof 1 - co2 

Comparing (10.65) and (10.66), we conclude that 

a cos (t + 0) - a/3 sin (/ + 0) = 0 

Differentiating (10.65) with respect to t yields 

(10.66) 

(10.67) 

u = -a cos (/ + 0) - a sin (/ + 0) - a0 cos (r + 0) r COS CO xt 
1 - CO, 

cos (co2r + v) 
1 - CO 2 

Substituting (10.64), (10.65), and (10.68) into (10.1), we obtain 

a sin (/ + 0) + a0 cos (/ + 0) = ef 

where 

(10.68) 

(10.69) 

F, co, F 2 co 2 

a sin (/ + 0) + 2 sin co,/ + ; — " T 5 " 1 (co2/ + *0 

+ a2 cos2 (f + 0) + 

2aF, 

-^-jcos co,/ + 
( 1 - c o ] ) 2 ( 1 - c o ! ) 2 

2aF 2 

cos2 (co2 / + v) 

1 - co2 

2 F , F 2 

cos (/ + 0)cosco,/ + , cos (/ + 0) cos (co2r + v) 
1 - co2 

cos CO,/ cos (co2/ + v) 
(1 - co?)(l - < £ ) 

Solving (10.67) and (10.69) for a and <z0, we have 

a = e/sin (/ + 0) 

ff0 = e/cos (r + 0) 

(10.70) 

(10.71) 

(10.72) 

Substituting (10.70) into (10.71) and (10.72) and using trigonometric identities 
(Appendix A ) , we obtain 

a = - eufl + ena cos (It + 20) - {cos [(co, - 1)/ - 0] 
1 - to, 

- cos [ ( co , + l ) / + 0 ] } - ^ ~ ~ ~ { e o s [ ( c o 2 - l ) / - 0 + » ] 
1 ~ CO? 



- cos [(co2 + l ) / + 0 + v ] } + A e a 2 s i n ( / + 0 ) + | e t f 2 sin(3f + 30) 

e F 2 

+ 2 ( 1 . { s i n ( ' + 0) + i sin [(1 + 2co,)r + 0] + j sin ((1 - 2to,)/ + 0 ] } 

eF2 

*2 (1 - col ) 2 ^ " ^ + i 3 ) " 1 " ^ C ( I + 2 o j ^ t + B + 2 v ^ 

+ | sin [(1 - 2co2)/ + 0 - 2 * ] } + ^ T ^ 2 ) { s i n [ ( 2 + " l ) t + 2 / ? 1 

+ sin [(2 - to, )/ + 20] } + 2 J g _ F ^ {sin [(2 + co2)/ + 20 + v) 
eF F 

+ sin [(2 - co2)/ + 20 - v]} + ^ ^ ^ 2 _ {sin [(1 + co, + to 2 )/ 
+ 0 + v] + sin [(1 - co, - co2)/ + 0 - v] + sin [(1 + co2 - co,)/ 

+ B + v] +sin [(1 - to 2 + to, )/ + 0 - y ] } (10.73) 

fc"FiCOiLt , 
A0 = - e/ifl sin (2/ + 20) - — ~ {sin [(co, + l ) f + 0] 

1 - coj 

+ sin [(co, - 1)/ - 0 ] } - {sin [(co, + 1)/ + 0 + v] 

1 - CO j 

+ sin [(co2 - 1)/ - 0 + v]} + J a 2 cos (/ + 0 ) + J a2 cos (3/ + 30) 

. e F 2 2\2 2(1 - co2) 
{cos (/ + 0) + } cos [(1 + 2co,)/ + 0] 

eF2 

+ \ cos [(1 - 2co,)/ + 0 ] } + _ ^ - {cos (/ + 0) 

+ \ cos [(1 + 2co2)/ + 0 + 2y] + \ cos [(1 - 2co2)/ + 0 - 2i>]} 

+ - l - j {cos co,/ + I cos [(2 + co,)/ + 20] + \ cos [(2 - co,)r 
1 - CO, 

+ 20] } + € g / \ {cos (co2/ + y) + \ cos [(2 + co2)/ + 20 + v] 
1 ~ CO 2 

+ { cos [(2 oo7)t + 20 - i>}} 

+ cos [(1 - co, - co2)/ + 0 - v) + cos [(1 + co2 ~ C O , ) / + 0 + J/] 



+ c o s [ ( l - c o 2 + co,)r + 0 - t> ] } (10.74) 

We note that (10.73) and (10.74) are lengthy. We could shorten them consid
erably if we express u and u in (10.64) and (10.65) in complex rather than real 
form. Thus, we let 

u = AeH + A , e / w ' f + A2eiUi*f + cc (10.75) 

it = iAe* + /co, A , <?/ w ' f + /co2 A2ei0}*t + cc (10.76) 

Differentiating u with respect to / and recalling that A = A(t), we obtain 

u = iAeH +Aeit + /to, A , ^ " ' ' + /co2 A 2 e , w * f + cc (10.77) 

Comparing (10.76) and (10.77), we conclude that 

ie*+ Je-/f = 0 (10.78) 

Differentiating (10.76) with respect to / gives 

M=-y4e/r
 + /4e / r - c o , A , e , w ' f - c o | A 2 e / a , ' f + cc (10.79) 

Substituting (10.75), (10.76), and (10.79) into (10.1) and using (10.16), we 
obtain 

iAeh - lAe'11 = -2iep\Ae h + co ,A , e , O J ' r + co2 A2ei^t] 

- eA2e2it- e A , e 2 / w > ' - e A ^ e 2 * ^ ' - 2 e X A , e / ( l + w ' ) ' 

- 2eAA2e'Xl + U}>* - e / l l - eA? - e A 2 A 2 - 2eAAle*w< ' 

- 2 eJA 2 e ' < U J ' - 1 > r - 2eA,A 2 e , '< a J ' + G ' ' > ' - 2eA2A,e-'<a ,>" 

+ cc (10.80) 

It follows from (10.78) that A exp (-//) = -A exp (it). Then, it follows from 
(10.80) that 

iA = {-ienlAe* + c o , A , e / w ' r + co2 A 2 e / W * f ] - \ eA2e2it 

- \ eA\ei2"S - \ eA\ei2"S- €AAxe^ + *>' 

- eA A2e^+ »>' - J e(>L4 + A 2 + A 2 A 2 ) - e l A , e / ( a ; > " 1 ) f 

- e ^ A 2 e / ( a ; ' - 1 ) r - e A , A 2 e « " > + w ' ) f - e A 2 A , e / ( ^ " w > ) f 

+ cc}e-,t (10.81) 

Expressing v4 in polar form and separating (10.81) into real and iniaginaiy 
parts, we obtain (10.73) and (10.74). 

Next, we consider the case co2 + co, = 1 + ea discussed in Section (10.2.1) and 
the case co, = 2 + ea, and co2 = 3 + ea2 discussed in Section 10.2.2. 
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2(1 - c o ? ) " " l v " 2(1 - co?)(l - col) 

X sin [(1 - co2 + to,)r + 0 - v) * (10.85) 

«*i . . . r,~ . « ^ ^ a 
"0 = ^ 2 T c o s K2 - w i ) ' + 20] + 2(1 - co?) 2(1 - co,) ( l - co2) 

X cos [(1 - co2 + co,)f + B- v] (10.86) 

which are equivalent to (10.30) obtained by using the method of multiple scales. 
Again, we note that the form (10.30) seems to be more convenient than (10.85) 
and (10.86). 

Keeping the slowly varying terms in (10.81) yields 

A=-€[iA+ ieAAxe/("« _ 2 ) t + feA2A,ei(">"w>"1)f (10.87) 

which is in full agreement with (10.30). The development in (10.84) and (10.87) 
shows that the complex form has advantages over the real form of the solution. 

Exercises 

10.1. Use the methods of multiple scales and averaging to determine the equa
tions governing the amplitudes and the phases to first order for a system gov
erned by 

10.3.1. THE CASE co, + co2 « 1 
To the first approximation, we keep only the slowly varying terms on the right-

hand sides of (10.73) and (10.74). The result is 

eF F 
a = . € ^ + — J _ i _ s i n [ ( ! - w - W l ) / + B - v] (10.82) 

2(1 - cof)(l - col) 

cF F 

2(1 - cof)(l - coO 

which are equivalent to (10.20) obtained by using the method of multiple scales. 
We note that whereas (10.20) is linear, (10.82) and (10.83) are nonlinear. This is 
the reason we did not express (10.20) in polar form, but solved it in its complex 
form. 

Keeping the slowly varying terms in (10.81) yields 

A=-enA + / e A , A 2 e / ( w ' + w * " 1 ) , (10.84) 

which is in full agreement with (10.20). 

10.3.2. THE CASE co2 - co, « 1 AND co, « 2 
Keeping the slowly varying terms on the right-hand sides of (10.73) and (10.74), 

we obtain 
eaFi e F i F o 

* = - + on - , ̂ s i n IE - "i)t + 2fl + _ , , a w i _ , , 
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u + CJO" = eu2 + Ki cos 12, r + K2 cos 122r e « 1 

when 122 ± 12, as coo- Consider only the case when 12, is away from zero. 

10.2. Consider the equation 

u + coo" + €u3 = Kx cos (Q.^ + 6x) + K2 cos (122r + 0 2 ) 

where coo, a n ^ 0,i are constants. When 12„ is away from co0 > use the method 
of multiple scales to show that 

«0 = A(Jx)eiu}°To + A , eia>T° + A 2 e / n 3 r ° + cc 

Then, show that 

Dlux + tolux [2ico0A' + 3(AA + 2AxA~x + 2A2A2)A}eiw°T<> 

- 3 ( 2 ^ + A , A , + 2 A 2 A 2 ) A 1 e ' n ' r < ' 

- 3(2AA + 2A ,A , + A 2 A 2 ) A 2 e i n > T ° - A3e3iU}°T> 

- A fe 3 , " ' r «> - A\e3i^T> - 3A2A,e*2"**"«>r° 

- 3A2A2e*2wo + aJT<> - 3A2Axeii2M'-ai)T« 

- 3A2A2e^-a^ - 3AA\ei^ + 2 € l ^ 

- 3AA\el^*2a^ - 3AAUKuio"2a,)To 

- 3AA\ei^»~2IW - 6AA,A2e** + + 

- 6 ^ A 1 A 2 e ' < w o - " , - W . 6 ^ A 1 A 2 e / ( w o - « . + «J)^o 

- e M A ^ * " - " ^ - 3 A 2 A 2 e ' < 2 " > + ">>r° 

- 3 A ?AV ( 2 " ' - ^ > r o - 3 A 1 A l e i ( n ' + 2 n '> 7 i 
- 3 A , A 2

2 e ' < 2 ^ - ^ r o + c c 

(a) Show that, if 122 > 12,, resonances occur whenever 

co0
 5 5 5 312, or 3122 

coo ^ 3 12, or 4 12 2 

co0 » 1 2 2 ± 212, or 212, - 122 

to 0 as 2122 ± 12, 

co0 \ (122 ±12,) 

(b) Show that simultaneous resonances occur whenever 

122 as 912, as 3co0 

122 as 12, as 3co0 

122 as 12, as ^ C0Q 
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ft2
 8 8 5ft, * j U>o 

ft 2 * 7 f t j * -j COo 

ft2 * 2fti * \ co0 

ft 2 * J ft j * 7 d J ( ) 

ft2 ~ I fti ^ 5co0 

ft 2 2 ^ I 

ft 2 8 8 3ft, ** | U)0 

(c) When C J 0
 = 2ft, + ft2 + eo, show that 

2ico0/*' + (3/lT + 6A ,A , + 6A 2 A 2 ) , 4 + 3A 2 A2e~ioT> = 0 

(d) When 3ftj = to 0 + co, and ft2 = 3co0
 + co 2 , show that 

2iu)0A' + 3(AA + 2A, A, + 2 A 2 A 2 M + A 3 <> / o ' r ' + 3A 2 I V a ' r ' = 0 

(e) When 3ft, = co0
 + co, and ft2 + ft, = 2to0 + co 2 , show that 

c j 0 4 ' + 3(AA + 2 A 2 A 2 + 2A 2 A 2 )/1 + A ,VC T , r ' + 6 J A , A1eia*T* + 3A 2 A j ^ - V . =C 

( f ) When 3ft, = co0 + eo, and ft2 - ft, = 2co0 + eo 2 , show that 

2ico0A' + 3(A A + 2A,A, + 2A 2 A 2 )/ t + A 3 f / o ' r ' + 6 J A , A 2 e ' ° i r ' = 0 

(g) When 3ft, = co0 + co, and 2ft 2 - ft, = OJ0 + eo 2 , show that 

2ico0A' + 3(/lI+ 2A,A, + 2A 2 A 2 )/1 + A,*' ' 0 ' 7 " ' + 3A2; A , e , a ' r ' = 0 

(h) When ft, = 3to0 + eo, and ft2 - 2ft, = co0
 + co 2 , show that 

2ico0A' + 3(>M + 2A,A, + 2A2A7)A + 3 J 2 A,c,*°»7'' + 3A 2 A 2 f / 0 i r ) = 0 

( i ) When ft, = 3co0 + eo, and ft2
 - ft, = 2co0

 + co 2 , show that 

t to 0 , r+3 ( ,4 l+2A,A , + 2 A 2 A 2 ) / 4 + 3 l 2 A , e ^ =0 

10.3. Consider the problem in the preceding exercise. Let 

u = AiOe1"*'+ A . ^ ' + A ^ ' + cc 
Use the method of variation of parameters to show that 

-2»to0/4'= {3(AA + 2A,A, + 2A 2 ~A2)Aei"*t + 3(2/1 J + A , A , 

+ 2 A 2 A 2 ) A , e ' " ' ' + 3(2AA + 2A,A, + A 2 A 2 ) A 2 e , n ' r 

M V ^ ' + A 3 c 3 ' n . ' + A 3 . * 3 ' " ' ' + 3/12 A, t ' « a " » * n ' ) r 

+ 3/12 A 2 <•** * n>>' + 3 /12 A, c/(2w«" ) r + 3/12 A 2 c , ( 2 u ; « " " ' > ' 

+ 3A A]cKin> * w »> ' + 3/I A? . - / ( i n « + *"•>' + 3/1 aV ( W °" 2 " ' ) F 

+ 3/1 A 2 c * " ' " 2 n > ) ' + 6/4 A, A 2 t - ' < " • * n ' + w " ) f 

+ 6/1 A, A 2 c " ' ( n ' * n » " • 6/1 A, A 2 c , ( " J ' + ^ 

+ 6 A A, A V ( " ' " " » * " n ) ' + 3A? A 2 r ' < 2 " - * ">>' 



+ 3A2XV(2n' " a ^ + 3A,A2e''<"' + 2a>*+3\lAlci<*a>'n>» 

+ cc} 
Average this equation for the cases in the preceding exercise. 

10.4. Use the methods of multiple scales and averaging to determine a first-
order uniform expansion for 

ux + co2 ux = a , M i M 2 

u2 + co 2 u 2 = a 2 u 2 

for small but finite amplitudes when co2 a* 2cOj. 

10.5. Use the methods of multiple scales and averaging to determine the equa
tions describing the amplitudes and phases of the system 

ux + co2ux = a1u2u3 

it2 + co\u2 - a2uxu3 

u3 + CO3U3 = a3uxu2 

for small but finite amplitudes when CO3 as to, + co2. 

10.6. Use the methods of multiple scales and averaging to determine first-order 
uniform expansions for 

iix + co2ux = eaxuxu2 + ekx cos £lxt 

u2 + cofu2 = €<x2u\ + ek2 cos £l2t 

when 

(a) co2 as 2CO] and £lx as co,. 
(b) co2 as 2cOi and £ 2 2 asco2. 



CHAPTER 11 

The Mathieu Equation 

In contrast with the two preceding chapters, in which the excitations appear as 
inhomogeneities in the governing equations, in this chapter, we consider excita
tions that appear as coefficients in the governing equations. Such excitations are 
called parametric excitations. The simplest possible equation that describes the 
parametric excitations of a system having a single degree of freedom is the 
Mathieu equation 

^ T
+ ( 5 * + € * cosco * r * )M*=0 (11.1) 

at* 

As before, we introduce dimensionless quantities. We let 

u* 
.. tt = — t= ±co*t* 

u* 

where u* is a representative value of u*. Then, (11.1) can be put in the standard 
form 

u + (6 + 2e cos 2r>< = 0 (11.2) 

where 

46* 4e* 
o=—7 e = — - j 

co* co*1 

In the next section, we determine a second-order straightforward expansion for 
small e and investigate its uniformity. In Section 11.2, we describe the Floquet 
theory, which characterizes the exact solutions of (11.2). In Section 113, we 
describe the method of strained parameters to determine approximations to the 
periodic solutions, while in Section 11.4, we determine approximations to the 
exact solutions. In Sections 11.5 and 11.6, we show how the methods of multiple 
scales and averaging can be used to obtain uniform expansions for the solutions 
of (11.2). 
234 
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1 1 . 1 The Straightforward Expansion 

We seek a straightforward expansion for the solution of (11.2) in power series 
of e in the form 

u ( / ; e ) = u 0 ( / ) + a « i ( r ) + t2u2(t)+- • (11-3) 

Substituting (11.3) into (11.2) and equating coefficients of like powers of e, we 
have 

w0 + S w 0 = 0 (11.4) 

iix + 5 « , = -2u0 cos2r 01.5 ) 

u2 + 5u2 = -2w, cos2r (11.6) 

The general solution of (11.4) can be expressed as 

u0=a cos (tor + 0) 6 = to 2 (11.7) 

where a and 0 are constants. Then, (11.5) becomes 

« i + co 2 « i = -2a cos (tor + 0) cos 2r 
or 

ux + CO 2 M , = -a cos [(to + 2)r + 0] - a cos [(to - 2)r + 0] (11.8) 

As before, disregarding the homogeneous solution, we write the solution of 
(11.8) as 

_ a cos [(to + 2)r + 0] | a cos [(to - 2)r + 0] 

4 ( 1+ t o ) 4 ( 1 - c o ) 1 ^ 

Then, (11.6) becomes 

u2 + t o 2 « 2 = — — - — - cos [(to + 2)r + 0] cos 2r 
2(1 + to) 

2(1 - to) 

or 

ii2 + co2u2 = - ° cos [(to + 4)r + 0] - a cos [(to - 4)r + 0] 
4(1 + to) 4(1 - to) 

\A77—T + T77^—: cos (tor+ 0) (11.10) 
[4(1 + to) 4(1 - co)J 

Disregarding the homogeneous solution, we write the solution of (11.10) as 

a . , rtX a cos [(to + 4)r + 0] 
u = . t s m f^t + 0) + ~ — -

4 t o ( l - t o 2 ) v H 7 32(1 + to) (2 + to) 



Substituting (11.7), (11.9), and (11.11) into (11.3), we obtain 

u = a cos (cor + B) + | ea 
f cos [(co + 2)r + B] ( cos [(co - 2)r + B] 

1 + co 1 - co 

32 
8 f si 

. coi (1 - co2 ) 

cos [(co - 4)r + B] 

(1 - co) (2 - co) 

sin (cor + B) cos [(co + 4)r + B] 

(1 + co) (2 + co) 

(11.12) 

The straightforward expansion breaks down for large t because of the presence 
of the mixed secular term. It also breaks down when co 0, 1, and 2 because 
of the presence of small-divisor terms. Carrying out the expansion to higher 
order, one finds that small-divisor terms occur when co n, where n = 0, 1,2, 
3, • • •. Next, we discuss the Floquet theory, which characterizes the exact solu
tions of (11.2). 

1 1 . 2 . The Floquet Theory 

In this section, we determine general properties of the solutions of (11.2) 
without actually solving for them. These properties are then used in the sub
sequent sections to determine uniform approximations to these solutions. 

Since (11.2) is a second-order linear homogeneous equation, it possesses two 
linearly independent solutions ux(f) and u 2 ( r ) satisfying the initial conditions 

- .<P) - i *.<D)--0 ( U 1 3 ) 

u 2 (0 ) = 0 r i 2 ( 0 ) = l 

because the determinant of the Wronskian matrix (see Section B.I.) is different 
from zero. We show next that, if ux(t) is a solution of (11.2), then ut{t + n) is 
also a solution of (11.2). To this end, we change the independent variable from 
r to z - t + 7r. Then, (11.2) becomes 

d2u 
—T + [5 + 2e cos (2z - 2TT) ] U = 0 
dz 

or 

d2u 
~ + ( 6 + 2 e cos2z )u=0 (11.14) 
dz* 

since cos (2z - 2ir) = cos 2z. But (11.14) has the same form as (11.2); therefore, 
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if ur(r) is a solution of (11.2), then ux(z) = M, ( f + it) is also a solution of (11.14), 
that is, (11.2). 

From the preceding discussion, it follows that, if ux(t) and u2(t) are any two 
solutions of (11.2), then ux(t + i;) and u2(t + it) are solutions of (11.2). More
over, if uv(t) and u2(t) are linearly independent, then ux(t + it) must be linearly 
dependent on ux(t) and u2(t), because a second-order equation has only two 
linearly independent solutions. Hence, there exist two constants an and ai2; 
both do not vanish simultaneously, such that 

w,(r + it) = anUl(t) + al2u2(t) (11.15) 

Similarly, there exist two constants a2l and a22; both do not vanish simultane
ously, such that 

u2(t +ir) = a2lUi(t) + a22u2(t) (11.16) 

because u2(t+ it) must be linearly dependent on ux(t) and u2(t). For the initial 
conditions (11.13), we find from (11.15) and (11.16) that 

au=ut(it) a2l=u2(n) (11-17) 

Differentiating (11.15) and (11.16) with respect to t gives 

ux(t + n) = auu1(t) + al2u2(t) 

u2(t + TT) = a21ui(t) + a22u2{t) 

Substituting (11.13) into (11.18), we have 

al2 = ux(n) a22 = u2(n) (11.19) 

Thus, once u\{t) and u2(t) are known, the coefficients fl,-y in (11.15) and (11.16) 
can be uniquely determined as in (11.17) and (11.19). 

We return to (11.15) and (11.16) and write them in matrix notation as 

u(t+n) = Au(t) (11.20) 

where 

A . [ ' » * > ] , . [ • " • ] (U .21 ) 
a2l a22j [u2J 

Next, we investigate the effect of linearly transforming u(f) to v(r). thus, we let 

v(f) = Ai (/) (11.22) 

where P is a 2 X 2 constant nonsingular matrix. In scalar notation, (11.22) can 
be rewritten as 

» . + P B « , ( H 2 3 ) 

V2 =p2l« l +P22U2 

(11.18) 
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It follows from (11.22) that 

u(r )=/ J _ 1 v (0 

where P~ 1B the inverse of P; that is, 

(11.24) 

(11.25) 

where / is the identity matrix 

1 0 

0 1 

Substituting (11.24) into (11.20) gives 

p-l\(t+n) = AP-lv(t) (11.26) 

Multiplying (11.26) from the left by the matrix P and using (11.25), we obtain 

y(t+ir) = PAP-l\(t) (11.27) 

or 

v(/+ir) = 5v( f ) (11.28) 

where 

B = PAP~l (11.29) 

The matrices A and B are usually called similar matrices because they have the 
same eigenvalues. To show this, we note that 

IB - XII = \PAP~1 - XPP~H = \P(A- XI)P~1\ 

= \P\ \A - XI \ l/>- , l= \A-\I\ (11.30) 

because \P\\P~1\=l. 
It follows from any book on linear algebra that a nonsingular constant matrix 

P can be chosen so that B will have its simplest possible form, the so-called 
Jordan canonical form. This form depends on the eigenvalues and eigenvectors 
of A. The eigenvalues of A and hence B are given by 

an - X axl 

a2l a22 - X 
= 0 

or 

Hence, 

But 

( a „ - X) ( f l 2 2 - X) - a12a2l * 0 

X2 - ( a „ + a22)X + axxa22 - aX2a2X = 0 (1131) 

file:///PAP~1
file:///A-/I/
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axxa22 - ana2l = u^u^n) - u2(n)ux(n) = 1 

according to (11.17) and (11.19) and the fact that the Wronskian is unity. Then, 
(11.31) becomes 

X 2 - 2 a X + 1 - 0 (11.32) 

where 

a=\(an + a 2 2 ) = - | [ " i 0 r ) + W20r)] 

The solutions of (11.32) are 

X = a ± V « 2 - 1 (11.33) 

If a 1, (11.33) yields the two distinct eigenvalues 

Xj = a + \A*2 ~ 1 X2 = a - V " 2 - 1 (1134) 

and B has the diagonal form 

~\x 0 
B = 

0 
(11.35) 

If a = ± l , (1133) yields only one eigenvalue, namely X - a = ± l , and B has 
either the form 

or the form 

B = 

±1 0 ' 

0 ±1 

±1 0 

1 ±1 

(1136) 

(1137) 

When B has either the form (1135) or (1136), (11.28) can be rewritten in 
scalar form as 

+ - W O ( 1 1 3 8 ) 

v2(t+n) = \2v2(t) 

where \t = X2 = ±1 when B has the form (1136) . It follows from (11.38) that 

t>,(f + 27r) = XIw1(r+7r) = X 2 y 1 ( 0 

w,(r + 3TT) = X,i>i(r + 2;r) = \\vx(f) 

vx(t + 4TT) = \xvx(t + 3TT) = \\vx(t) 

y1(r + ^ ) = X?t;1(/) (1139) 

where n is an integer. Similarly, 



v2(t + nir) = \lv2(t) ( l l . 40 ) 

Consequently, as t -*>«>(i.e., w « » ) 

0 if IX/K1 

«» if IX,-1 > 1 

and the solution becomes unbounded with time if the absolute value of any of 
the X/ is larger than unity. When \ x = X2 = 1, (11.38) shows that vt is periodic 
with period it. When X, = X2 - - 1 , 

«t+.•).-«<> ( U 4 2 ) 

Vj(t + 2 r r ) = -y,(r + TT) = vt(t) 

so that is periodic with period lit. Thus, the cases X, ~ X2 = ±1 separate stable 
from unstable solutions and they are usually referred to as transition values. 

Equations (11.38) can be used to express the Vj(t) in the so-called normal or 
Floquet form. To accomplish this, we multiply the first of (11.38) by exp-
[ - 7 i ( * + tf)l»where yx is specified later, and obtain 

e-?«<'+ «)Vl(t + n) = \le^ne^tul(t) (11.43) 

If we let 

X , e ^ ' 7 r = l then = Xj and 7 , = - l n X , (11.44) 
it 

Consequently, (11.43) becomes 

e -T><' + 7 O y i ( r + 7r )=e-^ r t f i (0 (11.45) 

Hence, exp ( - 7 i 0 y i ( 0 *s periodic with the period 7rso that it can be expressed as 

e - ^ i C W i C ) (11-46) 

where #i(r + it) = 0,(0- Hence, vx{t) can be expressed in the normal form 

y i ( r ) = e^ '0 1 ( r ) (11.47) 

where 7 , = (l/7r)ln X1 is called the characteristic exponent. Similarly, u2 ( f ) can 
be expressed in the normal form 

v2(t) = e^2(t) (11.48) 

where 

4>2(t + it) - <p2(t) and y7 = — In X2 

it 
When B has the form (11.37), (11.28) can be rewritten as 

y l ( r + 7r) = Xy 1 (0 (11.49a) 



v2(t + TT) = Xt>2(0 + vt(t) (11.49b) 

where X = ±1. Using a reasoning similar to the above, we can express u,(/) in the 
normal form 

"i(O = *7'0i(O 
(11.50) 

<t>\(t+ ?r) = 0,(0 and 7 = — In X 

7T 

Then, the second equation in (11.49) becomes 

v2(t+ rr) = Xy2(O + e7'0,(O (11.51) 

Multiplying, as before, (11.51) by exp [-y(t + rr)] gives 

which can be rewritten as 

e-y(t* n)Vj(t + n) = e ^ r y 2 ( 0 + i 0,(0 (11.51) 
A 

In this case, v 2 (0 does not have the form (11.48) due to the presence of the 
term X_,0,(O- Instead, one can easily verify that 

i>2(0 = [02(O + 4 *,(/)]. <k(' + ") = <f>2(<) (11 -52) 
ffX 

When la I > 1, the absolute value of one of the X,- is larger than unity, whereas 
that of the other is less than unity because X,X2 = 1 according to (11.32). Since 
7,- = (l/7r)ln X,-, the real part of one of the 7, is positive and the other is negative. 
Hence, it follows from (11.41) or (11.47), (11.48), and (11.52) that one of the 
solutions is unbounded and the other is bounded with time. Figure 11-1 shows 
two possible types of unbounded solutions. The first type is oscillatory but with 
an amplitude that increases exponentially with time, whereas the second type is 
nonoscillatory and also increases exponentially with time. 

When l a l < 1, the X,- are complex conjugates and have unit moduli so that the 
real parts of the 7, are zero. Consequently, the normal solutions are bounded. 
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The bounded solutions are aperiodic varying with two frequencies—the imaginary 
part of 7 and the frequency of the excitation 2. Depending on the ratio of these 
two frequencies, the solution may exhibit many shapes besides the transition 
periodic shapes. Three of these shapes are shown in Figure 11-2. The transition 
from stability to instability occurs for la I = 1, which corresponds to the repeated 
roots A, = A2 = 1 and A, = A2 = - 1 so that y, = y2 - 0 or i. As discussed before, 
the former case corresponds to the existence of a periodic normal solution with 
period IT, whereas the second case corresponds to the existence of a periodic 
normal solution with period 27r. These ideas are the basis of the method of 
strained parameters for determining the values of 6 and e, which correspond to 
Ice I = 1, and hence, the transition from stability to instability. The locus of 
transition values separates the e5 plane into regions of stability and instability, 
as shown in Figure 11-3. Along these curves at least one of the normal solutions 
is periodic, with the period IT or 27r. 

The characteristic exponents for (11.2) can be obtained by numerically cal
culating two linearly independent solutions using the initial conditions (11.13) 
during the first period of oscillation. Using the values and first derivatives of 
these solutions at t = IT, one can calculate a = {[u^n) + u2(ir)], then determine 
the X,- from (11.34), and use them in turn to calculate 7/-( l/ ir ) ln X,-. Thus, 
for each pair of values 5 and e, one needs to repeat the above procedure, which 
is costly and time consuming. When the 7/ are small, we describe in Section 11.4 

u 

u 

u 

Figure 11-2. Bounded solutions of the Mathieu equation. 
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15.0 h 

Figure 11-3. Stable and unstable (shaded) regions in the parameter plane for the Mathieu 
equation. 

a scheme called Whittaker's method for determining approximations to the 
characteristic exponents. 

The above discussion shows that one needs a qualitative form of the solutions, 
namely the normal or Floquet form, to apply either the method of strained 
parameters or Whittaker's method. In Sections 11.5 and 11.6, we show that 
one need not know the normal form of the solutions to apply either the method 
of multiple scales or the method of averaging. 

11.3. The Method of Strained Parameters 

In Section 11.1, we found that the straightforward expansion fails when 
5 =»(), 1, 4, • • •, n2. This suggests expanding 5 around these values in powers 
of e in addition to expanding u(t; e). Thus, we seek a uniform expansion in the 
form 

u(f, e) = u0(t).+ eu j(r) + e2u2(t) + • • • (11.53) 

6 = n 2 + e 5 , + e 2 6 2 + ••• (11.54) 

and determine the 6„ so that the resulting expansion is periodic. Consequently, 
the resulting expressions for 6 define the transition curves separating stability 
from instability, as discussed in the preceding section. 

Substituting (11.53) and (11.54) into (11.2) gives 

«o + &*i + e2u2 + ' • • + (n2 + eS x + e26z + • • •) (w0 + eux + e2u2 + • • •) 

+ 2e cos 2t(u0 + eux + e2u7 +•••) = 0 
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which shows that u0 is periodic with period ir if n is even and period 2tr if n is 
odd. In what follows, we consider the three cases n - 0, l , and 2, beginning with 
the first. 

THE CASE n = 0 
In this case, the bounded solution of (11.55) is u0 = a. Then, (11.56) becomes 

Eliminating the term that produces a secular term in ux (i.e., imposing the 
condition that ux be periodic) demands that 

w0 + n2uQ = 0 

ui + n 2 « i = -bxu0 - 2u0 cos 2t 

ii2 + fl2u2 = - 5 ^ 1 - 6 2 M 0 - 2uj cos 2r 

(11.55) 

(11.56) 

(11.57) 

The general solution of (11.55) is 

uQ = a cos nt + b sin nr (11.58) 

« ! = - 6 i f l - 2a cos 2/ (11.59) 

5, = 0 (11.60) 

so that (11.59) reduces to 

iix - -2a cos 2/ (11.61) 

(11.62) 

(11.63) 

(11.64) 

Then, 

u0 + n2u0 + €(iit + n2ux + 5 , w 0
 + 2uQ cos 2t) 

+ e 2 (u 2 + n2u2 + 6 , w , + 5 2 u 0 + 2ux c o s 2 f ) + • • • = 0 

which upon equating the coefficient of each power of e to zero yields 
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Using the above results, we find that to the second approximation 

u = a + j eacos 2t + • • • (11.65) 

5 = 4 e 2 + — (11.66) 

Thus, the transition curve separating stability from instability and emanating 
from 6 = 0 is given by (11.66). Equation (11.65) shows that along this curve u 
is periodic with period n. 

THE CASE n = 1 

Substituting (11.58) into (11.56) and setting n = 1, we obtain 

iiy +ut = -8y(a cost + b sin t) - 2{a cos / + b sin t) cos 2t 

which upon using trigonometric identities becomes 

iiy +tty = - ( 5 , + l)a cos t - (8y - l)b sin t 

- a cos 3r - b sin 3t (11.67) 

Eliminating the terms that produce secular terms in w, demands that 

( 5 l + l )a = 0 (11.68) 

( 5 , - l ) Z > = 0 (11.69) 

so that (11.67) becomes 

iiy +uy = - a c o s 3 r - dsin3r (11.70) 

It follows from (11.68) that either 8y = -1 or a = 0, while it follows from 
(11.69) that either 5 y = 1 or b = 0. When 5 y = -1, (11.69) demands that b = 0, 
while when 5 j =1,(11.68) demands that a = 0. Thus, we have the two possibilities 

Oy=-l b = 0 (11.71) 

o , = l a = 0 (11.72) 

Then, disregarding the homogeneous solution we find that the solution of (11.70) 
is either 

Uy=±acos3t (11.73) 

or 

Uy=lbsin3t (11.74) 

Substituting (11.71) and (11.73) into (11.57) gives 

"2 + "2 = \a cos 3r - b2a cos t - \a cos 3t cos 2r 

or 

ii2 + u2 = ~ ( 6 2 + |)ff cos t + cos 3f - \a cos 5f (11.75) 
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THE CASE n = 2 

Substituting (11.58) into (11.56) and setting n = 2, we obtain 

« i + 4 « i = -6 ,(a cos 2r + b sin 2t) - 2(a cos 2f + b sin 2f) cos 2t 

or 

" i + 4 « i = -5 \a cos 2t - 8 tb sin 2f - a - a cos At - b sin 4r (11.83) 

Eliminating the secular terms from Wj demands that 6X = 0. Then, disregarding 
the homogeneous solution of (11.83), we have 

w , - - | a + 7^f lcos4/ + T^i>sin4/ (11.84) 

Then, (11.57) becomes 

u2 + 4w2 = -82(a cos 2f + b sin 2t) - 2(-\a + -fea cos 4r + yjZ> sin 4r) cos 2t 

or 

EUminating the term that produces a secular term in u2 demands that 

5 2 = - | (11.76) 

Therefore, to the second approximation 

u -a cos t + \ea cos 3t + • • • (11.77) 

6 = l - e - £ e 2 + ••• (11.78) 

Equation (11.78) defines one of the transition curves emanating from 8 = 1, 
and (11.77) shows that along this curve u is periodic with period 2?r. 

Substituting (11.72) and (11.74) into (11.57) gives 

ii2 + u2 = sin 3t - b2b sin t - \b sin 3t cos 2f 

or 

u2 +u2 = - ( 5 2 + | ) * s i n r - |6s in3r - \bsin5t (11.79) 

Eliminating the term that produces a secular term in u2 demands that 

« a - - i (11.80) 

Therefore, to the second approximation, 

u = Z>sinf+|e!>sin3f+ • • • (11.81) 

6 = l + e - { e 2 + --- (11.82) 

Equation (11.82) defines the second transition curve emanating from 5 = 1, and 
(11.81) shows that along this curve u is periodic with period 2 jr. 

file:///bsin5t
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u 2 + 4w2 = ~ (5 2 - j2)a cos 2t - ( 6 2 + sin It + NST (11.85) 

Ehminating the secular terms from u2 demands that 

( 5 2 - - ^ ) a = 0 and (o2+±)b = Q (11.86) 

Hence, either 

5 2 = - ^ and Z> = 0 (11.87) 

or 

5 2 = and a = 0 (11.88) 

Therefore, to the second approximation, either 

u = a cos 2/ - £ea(l - | cos 4f) + • • • (11.89) 

5 * 4 + ^ 6 * + ••• (11.90) 

or 

M = O s in2r+-^e6sin4r + - (11.91) 

o = 4 - £ e 2 + — (11.92) 

Equations (11.90) and (11.92) define the transition curves emanating from 5 = 4 
along which (11.89) and (11.91) show that u is periodic with period TT. 

11.4. Whittaker's Method 

In the preceding section, we found that the method of strained parameters 
yielded the transition curves and the periodic solutions along them. If we are 
interested in the solutions in the neighborhoods of the transition curves, we need 
to use a different method. In this section, we use the normal or Floquet forms of 
the solution and put 

" ( O = e 7 f 0 (O ( n - 9 3 > 

where 0(/ + n) = 0(f ) according to Floquet theory. Differentiating (11.93) with 
respect to t yields 

ii = <?7f0 + 7<?7'0 (11.94) 

which upon differentiation with repect to t yields 

u = c 7 f 0 + 2yeyt<j> + 7V r0 (11.95) 

Substituting (11.93) and (11.95) into (11.2), we have 

0 + 2T0 + (5 + 7 2 + 2ecos2f)0 = O (11.96) 

Thus, the problem is transformed into one of determining 7 and the periodic 
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T ^ l j V M } (11.107) 

solutions of (11.96) for a given 8. Near the transition curves, y is small, and 
hence, we seek an expansion in the form 

0(r; e) = 0 o ( f ) + e0i(O + e V 2 ( 0 + ' * * 0 1 - 9 7 ) 

8 = 8 0 + e8, + e 2 S 2 +- • • (11.98) 

7 = e y , + e 2
7 2 + • • • (11.99) 

To describe the method, we limit ourselves to 0(e). Thus, substituting (11.97) 
through (11.99) into (11.96) yields 

0o + €0i + 2e7, (0 o + e0i ) + ( 6 0 + eS, + e2y\ + 2e cos 2f ) (0 o
 + €0,) + • • • = 0 

or 

0o + 8o0o + K0i + $o0i + 27 i0 o + 8 ,0 O + 20 o cos 2/) + • • • = 0 (11.100) 

Equating each of the coefficients of e° and e to zero in (11.100), we obtain 

00 + M o = O (11.101) 

01 + 5 o 0 i s _ 2 7 i 0 o " 5 i0o ' 20o cos It (11.102) 

The general solution of (11.101) can be expressed as 

0 O = a cos \fo~l t + b sin y/o~o~ t (11.103) 

Since 0 is periodic with period n according to Floquet theory, = n so that 
8 0 - n2, where n is an integer. Then, (11.102) becomes 

0i + « 2 0 i = -2yi(-an sin nt + bn cos nt) - 8 x(a cos nr + b sin /if) 

- 2(a cos nt + b sin nt) cos 2f (11.104) 

At this order, secular terms in 0j are produced only from the terms proportional 
to 7 , and 8 x unless n - 1. Then, (11.104) can be rewritten as 

0i + 0 i = (27 i f l - 8,6 + b) sin t- (2yxb + 6,a + a) cos f + NST (11.105) 

Eliminating the terms that produce secular terms in 0 , , we have 

2 7 . ^ ( 1 - 8 ^ = 0 ( n l 0 6 ) 

(1 + 6 ,)a +27,6 = 0 

For a nontrivial solution, the determinant of the coefficient matrix in (11.106) 
must vanish. The result is 

4 7
2 - ( l - 8 2 ) = 0 or 7 ? = l ( l - 8 2 ) 

Hence, 

file:///fo~l
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It follows from the first equation in (11.106) that 

on account of (11.107). Therefore, to the first approximation I. Therefore, to the first approximation 

(11.108) 

(11.109) 

where a, and a2 are arbitrary constants to be determined from the initial condi
tions. When 6, « 1, a should be expressed in terms of b. 

Equation (11.109) provides a first approximation to u on and near the transi
tion curves. The characteristic exponents are ±\e\J 1 - b\. Consequently, the 
motion is unbounded when 1 >b\ and bounded when 1 < 5 2 . T h e n ,5? = 1 or 
5 j = ±1 corresponds to the transition from stability to instability. Therefore, to 
the first approximation, the transition curves emanating from 5 = 1 are given by 

1 1 . 5 . The Method of Multiple Scales 

Although Whittaker's method yielded a uniform approximation to the solu
tions of (11.2) on and near the transition curves, it is valid only for linear 
problems for which one can appeal to Floquet theory to determine the forms of 
the solutions. For nonlinear problems, Floquet theory does not apply and one 
may not know the form of the solutions a priori. Consequently, one may not be 
able to use Whittaker's method for such problems. However, these problems can 
be treated effectively by using the method of multiple scales, because one need 
not know the form of the solution a priori and because it is not limited by the 
nonlinearity. 

To apply the method of multiple scales to (11.2), we seek a uniform expansion 
in the form 

where Tn = ent. In this section, we obtain only a first-order expansion and leave 
the second-order expansion for the exercises. Thus, we stop at O(e) and use only 
T0 and 7, . Substituting ( I I .111) into (11.2) and using (5.45) and (5.46), wr 
obtain 

(Dl + leDoDy) (u0 + e « i ) + ( 5 + 2e cos 2T0) (u 0 + eu,) + • • • = 0 

where cos It is expressed in terms of the fast scale. Equating each of the coef
ficients of e° and e to zero, we have 

6 = 1 + e + • • • (11.110) 

u(r;e) = u (7 0 , T , , 7*2, Tn,e) = u0 + eu, + e 2 u 2 + • •• (11.111) 
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Dlu0+6u0*0 (11.113) 

D\ux + 6w, = -1DQDXUQ - 2 « 0 cos 2TQ (11.114) 

The general solution of (11.113) can be expressed in the complex form 

w0 = A(Tl)ei"T» +A(Tl)e-i"To (11.115) 

where 

co=V5 or co2 =5 (11.116) 

Then, (11.114) becomes 

D\ux + co2ux = -HuA'e™7* + 2iu>A'e-iuT* 

- (e2iT<> +e~2iTo)(AeiojTo +Ae™T'>) 

or 

D2
0ux + co2u, =-2icoA'ei"T° -Aei(-2-^T" - A e ^ 2 ^ ^ + cc (11.117) 

There are two cases to be considered: co is away from 1 and co ^ 1. 

THE CASE co AWAY FROM 1 

In this case, eliminating the terms that lead to secular terms in u x demands that 

A' = 0 or A=A0 = constant (11.118) 

Therefore, to the first approximation, 

u = AoetuiT° + A0e~iu}T° + • • 

If we let^40 = {a0 exp (i/30), where a0 and 0 O are real constants, 

u = a0 cos (to/+ 0 O ) + * • • (11.119) 

Thus, the motion is bounded. 

THE CASE to * 1 
In this case, we introduce the detuning parameter to, defined by 

co = l + e c o , or 1 = co - ecoi (11.120) 

and put 

(2 - co )r 0 = coT0 - 2etoxT0 = tor0 - 2co 1r, (11.121) 

It follows from (11,117) that the secular terms in ux will be eliminated if 

2/coyi' + Ae~2iu>*Ti = 0 (11.122) 

To solve (11.122), we have two choices—either express A in polar form or 
separate A into real and imaginary parts. With the first choice 
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A = ±aei0 (11.123) 

so that (11.122) becomes 

ito(a' + iaB')eie + {ae**®* 2 u , » r ' > = 0 
or 

iu>(a + iaB') + \ae'ix ~ icofa' + iaB') + ±a cos x " sin x = 0 (11.124) 

where 
X = 20 + 2co,7'1 (11.125) 

Separating real and imaginary parts leads to 

toc' = i f l s inx (11.126) 

u>aB' = ^acosx (11.127) 

Eliminating 0 from (11.125) and (11.127) yields 

coax'= 2coco ,a + a cos x (11.128) 

It follows from (11.126) and (11.128) that when a * 0 

cog' _ |as inx 

coax' 2coco 5 <2 + a cos x 

Hence, 

da 1 sin x dx _ 1 d(cos x) 

a 2 2cocoi + cos x 2 2coco, + cos x 

which upon integration yields 

In a = - j\n (2toco, + cos x) + In c 

where c is a constant. Consequently 

a = c[2coco, + c o s X ] ~ , / 2 (11.129) 

Equation (11.129) provides a relation between a and x and one needs to solve 
either (11.126) or (11.128) to determine a and hence x as functions of 7V 

Since x takes on all possible values, cos x ranges from -1 to 1. Hence, the 
bracketed term in (11.129) vanishes and a becomes infinite (i.e., the motion is 
unbounded) if 2cocoi < 1 or 2coco, > ~ 1; otherwise, the bracketed term never 
vanishes and a is always bounded. Thus, the transition from stability to instability 
corresponds to 

2 to co, = 1 and 2 coco, = -1 

Since co * 1, these conditions yield co, % \ or - \ . Hence, the transition curves 
are given by 



252 THE MATHIEU EQUATION 

co = 1 ± j e + - •• 

But 5 = t o 2 ; therefore, the transition curves emanating from 6 = 1 are given by 

8 = (1 ± j e + - - - ) 2 

or 

8 = 1 ± e + - - - (11.130) 

With the second choice, we first introduce the transformation 

A = B e - i u } l T i (11.131) 

in (11.122) and obtain 

2/oo£' + 2toco,fl + i? = 0 (11.132) 

Thus, the above transformation transformed (11.122) into the constant-coef
ficient equation (11.132). To solve (11.132), we express B as 

B = Br + iBi (11.133) 

and obtain 

2ico(B'r + iB'() + 2axo, (5 r + iBt) + £ , - / # , = 0 (11.134) 

Separating real and imaginary parts in (11.134) yields 

2co# + (2toco1 - 1)5/= 0 j 3 5 ) 

2coB'i - (2coco i + l ) B r = 0 

Equations (11.135) have constant coefficients so that their general solutions 
can be sought in the form 

# r = & r e ^ r ' B^bfi^ (11.136) 

which when substituted into (11.135) gives 

2co7,6r + (2coco, - 1 ) ^ = 0 (11.137) 

-(2cocoj + \)br + 2co7,6/ = 0 

For a nontrivial solution, the determinant of the coefficient matrix in (11.137) 
must vanish. The result is 

4co27? + (4co2co] - 1) = 0 or y\ = ^ (co" 2 - 4co?) 

or 

7 , = ±1 V c o - 2 - 4co]" (11.138) 

Since to 1, 

7, **±{ V l - 4co2 (11.139) 
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Then, it follows from (11.137) that 

2co-y, / l +2co ,V / 2 

Substituting (11.131) and (11.133) into (11.115) and substituting the result 
into (11.111), we have 

u = (Br + iBi)ei<-UiT* - u , ' r ' ) + (Br - iB{)e -i(oiT<>" w'r>> + • • • 

= (Br + + (Br - iB.)e-if + • • 

= Br(eit + e-ir) + iBi(eit - e-") 

on account of (11.120). Hence, 

u = 2£ r cos/-25/s in/+ • • (11.141) 

Using (11.136) and (11.140) in (11.141), we obtain 

M = a , e 0 / W T ^ ĉosf. (̂ -Î -)1'2* sin /J 
+ a 2 e « / W I ^ i—^J1' sin/J + . - . (11.142) 

in agreement with (11.109) obtained by using Whittaker's method because 

2<y, = 6V When co, « { , br should be expressed in terms of />,. 

11.6. The Method of Averaging 

To apply the method of averaging to (11.2), we first need to change the 
dependent variable from u(t) to a(t) and 0(/), where 

u(t) = a(t) cos [cor + 0(r)] (11.143) 

and as before 6 = co2. Differentiating (11.143) with respect to t yields 

ii = -coflsin (co/+ 0) + a cos (to/+ 0) - a0sin(co/ + 0) (11.144) 

As before, imposing the condition that 

u - _ C O G sin (cor + 0) (11.145) 

wc obtain from ( 1 1 . 1 4 4 ) that 

d cos (co/ + 0) - a$ sin (cor + 0) • 0 (11.146) 

Differentiating (11.145) with respect to t yields 

u = -co2a cos (cor + 0) - cod sin (cot + 0) - coa0 cos (to/ + 0) (11.147) 
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Substituting (11.143) and (11.147) into (11.2), we have 

-co2a cos (cor + 0) - coa sin (cor + 0) - cofl/3 cos (cor + 0) 

+ (5 + 2e cps 2t)a cos (cor + 0) - 0 

which can be simplified to 

cod sin (cor + 0) + coa0 cos (cor + 0) = lea cos 2r cos (cor + 0) (11.148) 

because 6 = co2 . Solving (11.146) and (11.148) for a and 0 yields 

cod = lea cos 2r sin (cor + 0) cos (cor + 0) ^ 

cofl0 = lea cos 2r cos2 (cor + 0) 

Using trigonometric identities, we rewrite (11.149) as 

coa = { ea (sin [2(co + l )r + 20] + sin [2(co - l)r + 20]} (11.150) 

coa0 = {ea{l cos 2r + cos [2(co + l )r + 20] + cos [2(co - l )r + 20]} (11.151) 

Again, there are two possibilities-either co is away from 1 or co as 1. When 
co is away from 1, all the terms on the right-hand sides of (11.150) and (11.151) 
are fast varying so that to the first approximation 

a = 0 and 0 = 0 

in agreement with (11.118) obtained by using the method of multiple scales. 
When co a* 1, (co - l )r + 0 is a slowly varying function of t so that, to the first 
approximation, it follows from (11.150) and (11.151) that 

codr = iefl sin [2(to - l )r + 20] 
2 (11.152) 

coa0 = { ea cos [2(co - l )r + 20] 

in agreement with (11.125) through (11.127) obtained by using the method 
of multiple scales. 

Exercises 

1 1 . 1 . Consider the Mathieu equation 

u + (5 + 2e cos li)u = 0 

Determine a second-order uniform expansion by using the method of multiple 
scales when 5 as o and 5 as 4. 

1 1 . 2 . Consider the Mathieu equation 

u + (5 + 2e cos 2t)u = 0 

Use Whittaker's method to determine second-order uniform expansions when 
6 as o and 5 as 4. 
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1 1 . 3 . Consider the equation 

1 + e cos 2t 

( a ) Determine second-order expansions for the transition curves near 6 = 0, 
1,and 4. 

( b ) Use Whittaker's technique to determine second-order expansions for u 
near these curves. 

11.4. Consider the equation 

5 - e cos 2 t 
it + 7—u = 0 

1 - € COS I 

( a ) Determine second-order expansions of the first three transition curves 

(i.e., near 5 = 0 , 1 , and 4 ) . 
( b ) Use Whittaker's technique to determine u near these curves. 

1 1 . 5 . Consider the equation 

it + (5 + e cos 3 r )u = 0 

Determine second-order expansions for the first three transition curves using 
both the method of strained parameters and Whittaker's technique. 

11.6. Consider the equation 

u + (6 + e cos 2r - •§ e 2 a sin 2t + \ e 2 cos 4t)u = 0 

Determine three terms for the transition curves when 5 as l and 5^4. 

11.7. Consider the equation 

u + £ ( 1 - e cos t)~2 a ~ 2 [ 2 ( l - e cos r ) ( 2 - ea2 cos r) + € 2 a 2 s in 2 t] u = 0 

Show that three of the transition curves are given by 

a=2±±e + - • • 

fl=l + i e 2 + - - -

11.8. Consider the problem 

u + ( t o 2 + 2e cos 3t)u = 0, e « 1 

( a ) Use the method o f variation of parameters to determine the equations 
describing the amplitude and the phase. 

( b ) Use the method o f averaging to determine the equations describing the 

slow variations in the amplitude and the phase. Consider all cases. 

11.9. Use the methods of multiple scales and averaging to determine the 
equations describing the amplitudes and the phases to first order for a system 
governed by 

it + (o2,u ~ eu2 cos Q.t 
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where ft is away from zero when 

(a) to 0 is away from $2 and |ft, 
(b) c j 0 * ft, 
(c) 3a>0 * ft-

1 1 . 1 0 . Consider the equation 

u + COQ" + 2ew3 cos It - 0 e « l 

Use the methods, of multiple scales and averaging to determine the equations 
describing the amplitude and the phase to first order when 

(a) o>o is away from 1 and ^, 
(b) w 0 * l , 

(c) co0*4. 
1 1 . 1 1 . The parametric excitation of a two-degree-of-freedom system is governed 
by 

tix + C0 2 M| + e cos ftf(/nUi + / i 2 t / 2 ) = 0 

iii + tof u2 + e cos ftr(/21u2 + / 2 2 u 2 ) = 0 

Use the methods of multiple scales and averaging to determine the equations 
describing the amplitudes and the phases when ft co2 + c j j . 



CHAPTER 12 

Boundary-Layer Problems 

In Chapters 4-11, the effect of the perturbations is small but cumulative over a 
long period of time. Consequently, the amplitudes and phases are slowly varying 
functions of time and can be handled by slow time scales or mild strainings of 
the independent variable. In this chapter, we consider problems in which the 
perturbations are operative over very narrow regions across which the dependent 
variables undergo very rapid changes. These narrow regions frequently adjoin the 
boundaries of the domain of interest, owing to the fact that the small parameter 
multiplies the highest derivative. Consequently, they are usually referred to as 
boundary layers in fluid mechanics, edge layers in solid mechanics, and skin 
layers in electrical applications. There are many physical situations in which the 
sharp changes occur inside the domain of interest, and the narrow regions across 
which these changes take place are usually referred to as shock layers in fluid 
and solid mechanics, transition points in quantum mechanics, and Stokes lines 
and surfaces in mathematics. These rapid changes cannot be handled by slow 
scales, but they can be handled by fast or magnified or stretched scales. 

There are a number of methods available for treating boundary-layer problems 
including the method of matched asymptotic expansions, the method of com
posite expansions, the method of multiple scales, the WKBJ method, and the 
Langer transformation. The latter two methods are applicable to linear problems 
with a large parameter and they are discussed in Chapter 14. In this chapter, we 
concentrate our discussion on the method of matched asymptotic expansions, 
briefly introduce the method of composite expansions, and apply the method of 
multiple scales to one example. 

We begin with a simple example whose exact solution is available for com
parison and motivation of the methods to be used. Then, we consider linear and 
nonlinear problems whose exact solutions are not available. 

12.1. A Simple Example 

We consider the simple boundary-value problem 

ey" + ( l + e 2 ) / + (1 - e2)y = 0 (12.1) 

257 
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y(0) = a y(\) = 0 (12.2) 

where e is a small dimensionless positive number. It is assumed that the equation 
and boundary conditions have been made dimensionless. 

As a start, wc sock a straightforward expansion in the form 

y(x;e) = y0(x) + €yl(x) + - ' (12.3) 

Substituting (12.3) into (12.1) and (12.2) gives 

e(>o + e y ; + •••) + O + e^CVo + e/, + •••) + (! -e2)(y0 + eyi + -) = 0 

^o(0) + e > - , ( 0 ) + - = a 

^ o ( l ) + e y , ( l ) + - = 0 

Equating coefficients of like powers of e, we have 

Order e° 

y'o+yo=o (12.4) 

^o(0) = a ^oO) = 0 (12.5) 

Order e 

y\+yx--y* (12.6) 

^ . (0 ) = 0 j t ( l ) « 0 (12.7) 

The general solution of (12.4) is 

yo=c0e~x (12.8) 

where c0 is an arbitrary constant. 
We note from (12.5) that there are two boundary conditions on y0, whereas 

the general solution (12.8) of y0 contains only one arbitrary constant. Thus, 
y0 cannot (except by coincidence) satisfy both boundary conditions. For 
example, if we impose the condition y0(0) = a, we obtain from (12.8) that 

CY = C 0 so that y0 = ae'x (12.9) 

Then, imposing the boundary condition .yo(l) = ft we obtain from (12.8) that 

0 = c o e " 1 or c0 = Be (12.10) 

so that 

.Vo = p V ~ * (12.11) 

Comparing (12.9) and (12.10), we find that the boundary conditions demand 
two different values for c0, namely c0 =a and c 0 =Be, which are inconsistent 
unless it happens by coincidence that a = Be. 
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Comparing (12.4) and (12.1), we note that the order of the differential equa
tion is reduced from second order, which can cope with two boundary conditions, 
to first order, which can cope with only one boundary condition. Hence, one of 
the boundary conditions cannot be satisfied and must be dropped. Consequently, 
the resulting expansion is not expected to be valid at or near the end point 
where the boundary condition has been dropped. The question arises as to which 
of the boundary conditions must be dropped. This question can be answered 
using either physical or mathematical arguments as discussed below. As shown 
below, when the coefficient of y in (12.1) is positive, the boundary condition at 
the left end must be dropped. 

Dropping the boundary condition y(0) = a, we conclude that c0 = (k and that 
y0 is given by (12.11). Then, (12.6) becomes 

/i+yi=-fiel'x 02 .12) 

whose general solution is 

yx = cxe~x -fixe1'* (12.13) 

Again, (12.12) is first order. Hence,yx contains only one arbitrary constant and 
cannot cope with the two boundary conditions (12.7). Hence, no relief arose at 
first-order. In fact, no relief can be expected at any order, because the differen
tial equation at any order is first order. Again, we drop the boundary condition 
at x = 0, use the boundary condition yx(l) - 0, and find from (12.13) that cx -
pV. Hence, 

yx = p V - * - pxel-x=p(l -x)el~x (12.14) 

Substituting (12.11) and (12.14) into (12.3), we obtain 

y = pe*-* + epXl -x)e*-x + -- • (12.15) 

At the origin, .y = pV(l + e), which is in general different from the a. in (12.2). 
To determine the source of the nonuniformity and how it can be circumvented, 

we next investigate the exact solution. 

EXACT SOLUTION 
Since (12.1) is linear having constant coefficients, its solution can be sought 

by putting 

y = esx 

and obtaining 

es2 + (1 + e2)s + 1 - e 2 = 0 

(es + 1 - e) (s + 1 + e) - 0 

or 
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Hence, 

s = - (1 + e) or - - + 1 

and the general solution of (12.1) is 

y = aie-<i + *)x + fl2e-lO/«)-ijx ( 1 2 1 6 ) 

Using the boundary conditions (12.2) in (12.16), we have 

a = ax + a2 B = axe<x + *> + a 2 e " ^ " 1 1 

whose solution is 

tf» ~ e - 0 * e ) _ e - [ ( l/e ) - l l a 2 - _ e -I (J/e)-l] 

Therefore, the exact solution of (12.1) is 

[B- cwrlO/O-ilje-O + c)* + [ a e ~ ( 1 + e ) - fle-K1/')- »J* 
^ = e - 0 + e) _ e - [ ( i/c )- i j (12.17) 

To understand the nature of the nonuniformity at the origin in the straight
forward expansion, we expand the exact solution (12.17) for small e. To this 
end, we note that exp (-1/e) is smaller than any power of e as e - *0 . Hence, 
we can rewrite (12.17) as 

7 * + e><! "*> + •[<*- jfe1 * e ] * - ( */- « ) •* + EST (12.18) 

where EST stands for exponentially small terms. In deriving the straightforward 
expansion (12.15), we assumed that x is fixed at a value different from zero 
and then expanded y for small e. If we keep x fixed and positive, then exp (-x/e) 
is exponentially small and (12.18) can be rewritten as 

^ j f e O + * ) ( » - * ) +EST (12.19) 

Expanding (12.19) for small e, we have 

> , = < 3 e i - ^ e O - x ) + E S T 

= p V - * [ l + e(l - x ) + ̂ e 2 ( l - x ) 2 +•••] 

Hence, 

y = Bcl-x + cB(l ~x)el~x + - • • (12.20) 

in agreement with the straightforward expansion. 
As in the case of the straightforward expansion, (12.20) is not valid at or near 

the origin because y(0) = Be(\ + e), which is in general different from the a in 
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the boundary condition in (12.2). Therefore, in the process of expanding (12.17) 
for small e, we must have performed one or more illegitimate operations that 
caused the nonuniformity. To trace such illegitimate operations, we review our 
process of expanding the exact solution. We first assumed that exp (-l/e) is 
exponentially small and arrived at (12.18), which is uniform because at x = 0 
it yields y(0) = a, the imposed boundary condition in (12.2). Next, we fixed x 
at a positive value that is different from zero, concluded that exp (~x/e) is 
exponentially small, and obtained (12.19). Puttingx = 0 in (12.19), we find that 
y(0) = 0 exp (1 + e), which is in general different from the a in (12.2). Hence, 
this step is the one responsible for the nonuniformity. Looking at this step 
closely, we find that exp (~*/e) is exponentially small as e - *0 only when x 
is positive and away from zero. Therefore, it is not surprising that any expansion 
based on this assumption is not valid when x « 0. In fact, at x = 0, exp (-xr/e) = 
1, which is much bigger than any e™, where m > 0. Whenx = e, exp (-x/e) = e~l, 
which is 0(1) and not an exponentially small term. 

Then, there arises the question of how good the straightforward expansion 
(12.15) is when we know that it is not valid near x = 0. The answer to this 
question can be seen in Figure 12-1, which compares the value of y calculated 
from (12.15) and denoted by y°, with the value of y calculated from the exact 
solution (12.17) and denoted by ye for e = 0.01. It can be seen that, for this 
small e, y° agrees with ye except in a small interval near the origin called the 
boundary layer, where ye changes quickly in order to satisfy the boundary 
condition there. Figure 12-2 shows that as e decreases the boundary layer 
becomes thinner; thus, y(x; e) is continuous for e > 0 but discontinuous for 
e = 0. Hence, the limits of y as x -*• 0 and e -» 0 are not interchangeable. In fact, 

according to (12.17), and hence, 

e-*0 x-*0 
lim lim y(x; e) = a 

y 

4.0-t 

2.0-1 

o o 
.50 1.00 

x 
.00 .25 .75 

Figure 12-1. Comparison of the outer expansion^0 with the exact solution for e = 0.01, 
(3 ~ 1.0, and a = 0.0. 
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O.o-f , , , 
.00 .25 .50 .75 1.00 

Figure 12-2. Effect of e on the thickness of the boundary layer for (J = 1.0 and a = 0.0. 

On the other hand, 

lim y(x;e) = Be1~x 

according to (12.17), and hence, 

lim lim y(x; e) = Be 
x - 0 e - 0 

Consequently, 
lim lim y(x\e)^ lim lim y(x\e) 
e-*0 x-*0 x-»0 c - * 0 

thereby showing the nonuniform convergence of the exact solution y(x;e) to 
the straightforward expansion y°. Therefore, problems of this kind are usually 
referred to as singular-perturbation problems. Inspection of the exact solution 
(12.17) shows that y depends on x and e in the combinations (scales) x/e and ex 
as well as x alone. There arises the question of whether one can determine a 
uniform expansion by using another scale that is a function of x and e instead 
of JC. To answer this question, we investigate next the effect of scales on the 
resulting expansion. 

EFFECT OF SCALES ON EXPANSION 
To devise a method for determining uniform expansions for singular-perturba

tion problems, we magnify or stretch the boundary layer and investigate the 
behavior of the solution in the boundary layer as a function of the magnified 
scale. To facilitate this step, we investigate the effect of changing the scale on 
the resulting expansion. 

For example, let us change the scale from x to the magnified scale %=x/e. 
Then, (12.18), which does not contain the exponentially small terms, becomes 

y = /3e<1 + e > ( 1 -«*> + [a - Be1 + e ] e " * + € * + EST 

Expanding for small e with % being kept fixed yields 

y = Pe + (a - Be)e-* + e{Be(l - £)+ [-Be + (a - 0e)£]e~*} + • • • (12.21) 

y 

4.0-1 
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Figure 12-3. Comparison of the expansion (12.22) called the inner expansion and denoted 
by y ' with the exact solutiony* for e = 0.01, /J = 1.0, and a - 0.0. 

In terms of x, (12.21) can be rewritten as 

y = Be(l - x) + (ct-Be)(l +x)e~x/€ + eBe[l - e~*l€] +• • • (12.22) 

At the origin, .y(O) = or, while at the right end y(\)~ eBe. Hence, (12.22) is not 
valid near x - 1 although it seems to be valid at the origin. Figure 12-3 shows 
that the expansion (12.22) agrees with the exact solution in a small neighbor
hood of the origin but deviates very much from the exact solution away from 
the origin. 

As a second example, we consider the more magnified scale f = x/e2. Then, 
(12.18) becomes 

which, when expanded for small e with f being kept fixed, yields 

y = a- e(a- Be)$ + • • • (12.23a) 

or 

y = a- -(a- Be)+-- (12.23b) 
e 

Again, at the origin y(0) = a, whereas, at the right end, y(l) = a - (a - Be)/e, 
which is different from the B in (12.2). Hence, (12.23) is not valid near x = 1. 
In fact, Figure 12-4 shows that it is valid only in a very small neighborhood of 
the origin. 

As a third example, we consider the moderately magnified scale n = x/e^ 2 . 
Then, (12.18) becomes 

y = jfeO + e) (i - e*»n) +[a-Be1 + e] e'™'U% * ^ + EST 
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y 

u . v - j j , , , — ^ x 

.00 . 25 . 50 .75 1.00 

Figure 12-4. Comparison of the expansion (12.23) called the inner inner expansion and 
denoted by yli with the exact solution ye for e = 0.01, 0 - 1.0, and a » 0.0. 

which, when expanded for small e with T? being kept fixed, yields 

y = Be(l+€+-••) (1 - e 1 / 2T7 + j e y + • • •) 

= Be[i - € , / 2 T J + e(l + •£r,2) + • • •] (12.24a) 

or 

y = p>[l ~x + \x2 + e + - - - ] (12.24b) 

At the origin, ̂ (0 ) = Be(l + e) a, whereas at the right end y(l) = 0e( { + e) # B. 
Hence, (12.24) is not valid near either of the end points. However, Figure 12-5 
shows that it agrees with the exact solution in a small interior interval. 

The above discussion shows that an expansion of a function that depends on 
an independent variable and a small parameter, such as_y(x; e), depends strongly 
on the scale being used (i.e., the independent variable being kept Fixed). In the 
present example, when x was kept fixed, we obtained (12.20), which is valid 
everywhere except near the origin. When % ~-x/e was kept fixed, we obtained 
(12.22), which is valid only in a small neighborhood of the origin. When f = x/e2 

Figure 12-5. Comparison of the expansion (12.24) called the intermediate expansion and 
denoted by y1 with the exact solution ye for ( = 0.01, 0 = 1.0, and a = 0.0. 
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was kept fixed, we obtained (12.23), which is valid only in a very small neigh
borhood of the origin. When 77 = x/e1/2 was kept fixed, we obtained (12.24), 
which is not valid near any of the end points but valid in a small interior interval. 
Thus, it appears that a uniform expansion of the solution of a singular-perturba
tion problem cannot be expressed in terms of a single scale (i.e., a single com
bination of x and e), such as x or x/e or x/e2 or x/e1/2, making it an ideal 
problem for application of the method of multiple scales. However, for nonlinear 
problems, especially those governed by nonlinear partial-differential equations, 
application of the method of multiple scales may not be straightforward, and an 
alternative method, the method of matched asymptotic expansions, is frequently 
used. In this chapter, we stress this method. 

The basic idea underlying the method of matched asymptotic expansions is 
that an approximate solution to a given problem is sought not as a single expan
sion in terms of a single scale but as two or more separate expansions in terms of 
two or more scales each of which is valid in part of the domain. The scales are 
chosen so that (a) the expansions as a whole cover the whole domain of interest 
and (b) the domains of validity of neighboring expansions overlap. Because the 
domains overlap, the neighboring expansions can be matched (blended), and 
hence, connected. Nexf, we discuss the matching or blending process. 

MATCHING 
As an example, to illustrate the basic idea, we attempt to match the expansion 

(12.15), which is valid everywhere except in a small neighborhood of the origin, 
and the expansion (12.21), which is valid in a small neighborhood of the origin. 
If these two expansions have overlapping domains of validity, then we should be 
able to match them. Expansion (12.15) was obtained by expandingy(x; e) with 
x being kept fixed, while (12.21) was obtained by expanding y(x; e) with £ =x/e 
being kept fixed. There arises the question of what the effect would be of chang
ing the scales in these two expansions. 

Before answering this question, let us denote the expansion obtained by 
keeping x fixed with the superscript o, and hence, replace y in (12.15) withy°. 
Moreover, let us denote the expansion obtained by keeping | = x\e fixed with 
the superscript /, and hence, replace y in (12.21) with yl. Next, let us change 
the scale in (12.15) from x to £ and obtain 

/ ^ p V ^ + ejSO - e%)ex~*+-- (12.25) 

Expanding (12.25) for small e and keeping £ fixed, we obtain 

,(y°)' = fie + cBc( 1 - $ ) + " * (12.26) 

where the superscript i is used in (12.26) to indicate t h a t y has been expanded 
by keeping % fixed. We express (12.21) in terms of x, recall that y should be 
replaced w i thy , and obtain 
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/ = Be(l - x) + (a - Be) (1 + x)e"*/ € + eBe[l - e _ J c / e ] + • • • (12.27) 

Expanding (12.27) for small e with x being kept fixed, we have 

(y')° - Be(\ -x) + eBe+-- ' (12.28) 

where the superscript o is used in (12.28) to indicate thaty has been expanded 
by keeping x fixed. If we replace £ with x/e in (12.26), we have 

O 0 ) ' = Be(l -x) + eBe+--- (12.29) 

Comparing (12.28) and (12.29), we conclude that 

(12.30a) 

In other words, 

the outer expansion of (the inner expansion) 

= the inner expansion of the ou ter expansion (12.30b) 

It turns out that (12.30) holds whenever two neighboring expansions have 
overlapping domains. It is usually referred to as the matching principle and it serves 
to connect neighboring expansions. Hence, the union of the domains of validity 
of (12.15) and (12.21) covers the whole domain of interest, namely the interval 
[ 0 , 1 ] . Consequently, they can be used to represent y over [ 0 , 1 ] . 

Next, let us change the scales in (12.15) and (12.23a). Again, let us denote by 
the superscript o the expansion obtained by keeping x fixed. Also, let us denote 
by the superscript ii the expansion obtained by keeping f " x / e 2 fixed. We refer 
to this expansion as an inner inner expansion. Replacing x in (12.15) with J, 
we have 

yo=Bex-^ + eB{\ - e 2 ^ 1 + • • • 

which, when expanded for small e with f being kept fixed, yields 

(y°)u = Be + eBe + • •• (12.31) 

In terms o fx , the expansion (12.23a) is given by (12.23b), which, when expanded 
for small e with x being kept fixed, yields 

0 " ) ° = - ( a - p > ) j + a (12.32) 

Comparing (1231) and (1232), we find that 

C F ° ) " ^ 0 ' Y ( 1 2 3 3 ) 

indicating that (12.15) and (12.23a) do not have overlapping domains. This is 
not surprising because it is clear from Figure 12-4 that (12.23) is valid only in 
a very small neighborhood of the origin, and this is the reason we referred to it 
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as an inner inner expansion. We note that there are many inner inner expansions 
characterized by the scales $ = x/ev, where v>\. Hence, the union of the 
domains of validity of (12.15) and (12.23a) does not cover the whole domain of 
interest, namely the interval [ 0 , 1 ] . 

As a third case, let us consider interchanging the scales in (12.15) and (12.24a). 
Let us denote by the superscript / the expansion obtained by keeping n = x/e1/2 

fixed. We refer to this expansion as an intermediate expansion. Changing the scale 
f rom* to 7} in (12.15), we have 

^ / f e i - e ' ^ + epXl - e 1 ' 2 ^ 1 ' ^ * " ' (12.34) 

which, when expanded for small e with 77 being kept fixed, yields 

(y°y = Be- e ^ p ^ + e O + ̂ r j 2 ) (12.35) 

Replacing 17 with x in (12.24a) yields (12.24b), which, when expanded for small 
e with x being kept fixed, yields 

0 / ) ° = M l ~ x + ±x2) + eBe + - ( 1 2 . 3 6 ) 

Comparing (12.35) and (12.36) and recalling that r/ = x/e1/2, we conclude that 
they are identical, and hence, write 

O 0 ) 7 ^ 7 ) 0 ( 1 2 3 7 ) 

Hence, the expansions (12.15) and (12.24a) have overlapping domains, making 
the expansions obtained by interchanging the scales identical. It is clear from 
Figure 12-5 that it is not surprising that (12.15) and (12.24a) have overlapping 
domains. Although (12.15) and (12.24a) have overlapping domains, the union 
of their domains of validity does not cover the whole interval of interest because 
neither of them is valid near the origin. 

The above discussion shows that neighboring expansions obtained by using 
different scales need not have overlapping domains. Moreover for neighboring 
expansions, the union of their overlapping domains need not cover the whole 
domain of interest. Thus, the objective of the method of matched asymptotic 
expansions is to determine expansions that cover the whole domain of interest 
such that neighboring expansions have overlapping domains. Neighboring expan
sions are matched or blended using the matching principle (12.30). 

In this case, one can use (12.15) and (12.21) because they cover the whole 
domain of interest and yet have overlapping domains. However, one cannot use 
(12.15) and (12.23a) because they do not have overlapping domains. Moreover, 
one cannot use (12.15) and (12.24a) because the union of their domains does 
not cover the whole domain of interest. We should note that the domain of 
validity of (12.24a) overlaps with that of (12.21). To see this, we express (12.21) 
in terms of 77 =x/e 1 / 2 = e 1 / 2 £ and obtain 
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y = Be + (a - Be)e-*l(l11 + -Be + (a- Be) 

+ • • • 

which, when expanded for small e with 77 being kept fixed, yields 

O ' ) 7 - B e - Beel/2T) + eBe + • • • 

Replacing 17 in (12.24a) with if, we have 

yT = Be[l - e$ + e(l + j e £ 2 ) + - - - ] 

which, when expanded for small e with £ being kept fixed, yields 

(12.38) 

( y / = pV + e p > ( l - $ ) + - * - (12.39) 

Comparing (12.38) and (12.39) and recalling that n ~ e , / 2 ^ , we conclude that 
they are identical, and hence, write 

The preceding discussion shows that the domains of validity of (12.15) and 
(12.21) overlap and their union covers the whole domain of interest. Expansion 
(12.15) is usually referred to as an outer expansion and denoted by the super
script o. Expansion (12.21) is usually referred to as inner expansion and denoted 
by the superscript i. The variable x is called the outer variable, while the variable 
£ = x/e is called the inner variable. Moreover, the domain of (12.24a) overlaps 
that of (12.15) on the one hand and that of (12.21) on the other hand. Con
sequently, expansion (12.24a) is usually referred to asm intermediate expansion, 
and the variable 7? = x/e1/2 is called an intermediate variable because the mag
nification provided by rj falls in between x and % ~ x/e. Thus, any variable 1? = 

x/e", where 0 < v < 1, is an intermediate variable. Instead of matching the outer 
and inner expansions directly, one can match them by equating their respective 
intermediate expansions. We demonstrate this process in Section 12.3. In the 
next section, we show how the method of multiple scales can be used to deter
mine a uniform expansion for (12.1). 

12.2. The Method of Multiple Scales 

As discussed in the preceding section, y(x; c) depends on x and e in the com
binations x/e and ex in addition to x and e alone. This makes this problem ideal 
for application of the method of multiple scales. Since the domain is finite, ex 
stays small, and hence, nonuniformities will not arise from the presence of the 
secular terms ex, e 2 x 2 , e 3 x 3 , • • • , in contrast with the cases of infinite domains 
discussed in Chapters 4 through 11. Thus, it is sufficient to introduce the stretched 
scale % - x/e, which in this case is the same as the inner variable, and x 0 - x, 
which in this case is the outer variable. In terms of these scales 

(12.40) 



THE METHOD OF MULTIPLE SCALES 269 

dx e 33- bx0 

tfx2 e 2 3£2 + e 3£3x0
 + bx2

0 

(12.41) 

Then, (12.1) becomes 

+ ^ ^ ^ + (l + e
2 ) ( - ^ + ^ U ( l - e 2 > = 0 (12.42) 1 d2y 23 V &y „ 2^ P ^ ^ r + — + e-~ + (1 + e 2 ) - — + — 

e 3£2 3£3x0
 v I 6 *S bxo 

We seek a first-order uniform expansion for y in the form 

y syoQ;, xo) + ey,@, x0) + - - (12.43) 

As in nonlinear oscillation problems, we need to investigate the term 0(e) to 
determine the arbitrary functions that appear 'myQ. Substituting (12.43) into 
(12.42) and equating coefficients of like powers of e, we have 

T T + T 7 = - ^ T~~y° (12.45) 

3£ d£ 3£3x0 3x 0 

The general solution of (12.44) is 

y0=A(x0) + B(x0)e-t (12.46) 
where A and B are undetermined at this level of approximation; they are deter
mined at the next level of approximation by imposing the solvability conditions. 
Putting ̂ 0 in (12.45) gives 

^y±+^i=1B<e-t _A>. B>e-% . A _ Be-K 
3£2 3£ 

or 

~zt5~ + ~xt = ~(A' +A) + (B' - (12.47) 
3? 3£ 

A particular solution of (12.47) is 

yip ~ ~(A' + A)£ - (B' - B)Se-t (12.48) 

which makes ey, much bigger than^0 as £ » Hence, for a uniform expansion, 
the coefficients of £ and £ exp (-£) in (12.48) must vanish independently. The 
result is 

A'+A = 0 
(12.49) 

B' - B = 0 
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.00 .25 .50 .75 1.00 

Figure 12-6. Comparison of the solution (12.S2) obtained by the method of multiple scales 
and denoted by ym with the exact solution y e for e = 0.1,0 = 1-0, and a = 0.0. 

The solutions of (12.49) are 

A = ae"*" B = bex* (12.50) 

where a and b are arbitrary constants. Then, (12.46) becomes 

y0 - ae~x° + be~**x° 

or, in terms of the original variable, 

y0=ae-x + be-<xl€>*x 

Substituting for y0 in (12.43) gives 

y = ae-x + be-We)+x + - - (12.51) 

Imposing the boundary conditions (122 ) yields 

a = a + b B = ae'1 + £e"<,/e>+ 1 

Neglecting the exponentially small term exp (- 1/e) and solving for a and b, we 
obtain 

a-Be b = a- Be 

Hence, it follows from (12.51) that, to the first approximation, 

y = Be1 ~x + (a - Be)e<x&+X + • • • (12.52) 

Figure 12-6 shows that (12.52) is everywhere in close agreement with the 
exact solution (12.17). We took e = 0.1 in Figure 12-6, so that one can dis
tinguish the two solutions. 

1 2 . 3 . The Method of Matched Asymptotic Expansions 

As discussed in Sectkr 12.1, the basic idea underlying the method of matched 
asymptotic expansions is the representation of the solution by more than one 

y 

4 .0 - } 
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expansion, each of which is valid in part of the domain, and neighboring expan
sions overlap so that they can be matched. We describe this method by its 
application to a number of examples, beginning in this section with the simple 
example (12.1) and (12.2). 

As e -*• 0, (12.1) reduces to 

y'+y = 0 

which is of first order, and hence, cannot cope with the two boundary conditions. 
Consequently, one of them must be dropped and a boundary layer must be 
introduced. In Section 12 .1 , we used the exact solution to conclude that the 
boundary layer is at the origin. Of course, in the normal application of the 
present technique, the exact solution is not available; otherwise, there may not 
be any need to carry out an approximate solution. Consequently, we need to 
determine the locations of the boundary layers. In many situations, one can use 
physical arguments; in this Chapter,we describe how one can decide analytically 
the locations of the boundary layers. Moreover, in the preceding two sections, 
we were guided by the exact solution to decide that the scale % = x\e is the inner 
variable. In this section, we also describe the selection of the inner variable. 

To determine the location of the boundary layer, we assume that it exists at 
one of the ends. Then, we carry out one-term expansions. If neighboring expan
sions can be matched, our assumption is correct; otherwise, the boundary layer 
exists at the other end. 

Let us assume that the boundary layer is at the right end, and hence, J>(1) = j3 
must be dropped. Then, we seek an outer expansion in the form 

y°(x;e)=y0(x) + ---

which, when substituted into ( 1 2 . 1 ) and y(0) = a, yields 

/ o + . V o - O yQ(0) = a 

Hence, 

y0 = c0e~x so that a = c 0 

and 

yo=oce-x + ... ( 1 2 . 5 3 ) 

To analyze the behavior of the solution in the assumed boundary layer, we 
need to magnify the neighborhood of x = 1. Since the interval of interest is 
[ 0 , 1 ] , we magnify a small interval 1 - x near 1, where x < 1. Thus, we let 

£ = ~ ~ ( 1 2 . 5 4 ) 
€ 

where v must be greater than zero, in order that £ be a magnified or stretched 
scale. The value of v is not known, in general, a priori and must be determined 
from the analysis. We note that by design £ is positive. 
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It follows from (12.54) that 

x=l- ev% 

and that 

±=d_d£= \_d_ 

dx~d%dx ~ ev d% 

d2 _ 1 d2 

dx2=€2l>d$2 

In terms of£, (12.1) becomes 

e i - 2 , ^ ! Z _ e - , ( 1 + e 2 ) ^ + ( 1 _ € 2 ) > > = o (12.55) 
dV dk 

As e 0 with £ being kept fixed, the dominant terms in (12.55) are 

et-2vfy_€-»d2L+y + . . . = 0 ( 1 2 . 5 6 ) 
dV d$ 

The limiting form of (12.56) as e -* 0 depends on the value of v. There are 
three possibilities: v > 1, v < 1, and v = 1. 

When v> 1, the limiting form of (12.56) is 

d2yl 

whose general solution is 

/ = a o + M (12.57) 

Since the boundary layer is assumed to be at x = 1, it must satisfy the boundary 
condition y = B at x - 1. But x - 1 corresponds to £ = 0; therefore, y = 0 at 
£ = 0. Then, it follows from (12.57) that 

0 = flo 

and hence, 

/ = 0 + M (12.58) 

To match (12.53) with (12.58), we need (y°)1 and (y')°. Thus, we express 
(12.53) in terms of £ and obtain 

y° = ( * ? " ' + e " t 

which, when expanded for small e with £ being kept fixed, yields 

(y°f = ae'1 (12.59) 

Also, we express (12.58) in terms of x and obtain 
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e 

which, when expanded for small e with x being kept fixed, yields 

(B if 0 O = O 

(yT = < 
T N , (12.60) 
M l - * ) , , n 

z if b0 0 

Equating (12.59) and (12.60) according to the matching principle demands that 
b0 = 0 and ae~l = 0, which is not true, in general. Hence, the case v > 1 must 
be discarded. 

When v < 1, the limiting form of (12.56) is 

^ = 0 

whose solution is 

Again, y' should satisfy the boundary condition . y ( l ) = B or y' = B at % = 0. 
Hence, a 0 =j3and 

/ ' = 0 (12.61) 

Since yl is constant, 

( / f = / 3 (12.62) 

As in the preceding case, (y°J = a e " 1 . Hence, the matching principle 

(y°j = (yy 

demands that B = a e " 1 , which is not true, in general. Therefore, the case u< 1 
must also be discarded. 

When v = 1, the limiting form of (12.56) is 

d2y* c V = Q 

d? d$ 

whose general solution is 

yl=a0+bQe* 

Putting / = 3 when £ = 0 p.ives 

Oo + b0 - B or a0=B - b0 

Hence, 
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To perform the matching, we express y1 in terms of x and obtain 

y •= 8 - b0 + b0 exp 

which, when expanded for small e with x being kept fixed, yields 

\8 if 6 0 = 0 

( y f = A° = < / i - x \ 

' b0 exp y~^~J i f bo * 0 

(12.63) 

Again, ( j y 0 ) ' is given by (12.59). Then, equating (12.59) and (12.63) according 
to the matching principle demands that b0 = 0 and hence 6 = <xe~x, which is not 
true, in general. Hence, this last case must also be discarded and the boundary 
layer does not exist at x - 1. It must exist at the origin. This is checked next. 

To check whether the boundary layer exists at the origin, we introduce the 
stretching transformation 

or x = e " $ (12.64) 

where v must be greater than zero. Then, 

dx~d$dx~ev d% 

d2 ^ I d7 

dx2 e2v d%2 

and (12.1) becomes 

• 1 - 2 ^ + e " l ' ( l + e 2 ) | + ( l - 6 2 ^ = 0 

(12.65) 

whose dominant part as e -*• 0 is 

d? d$ y 

As before, there are three possibilities: v > 1, v < 1, and v = 1. 
When v > 1, the limiting form of (12.65) as e -*• 0 is 

d2yl 

- £ = 0 (12.66a) 
dV 

whose general solution is 

y = a 0 + M 

Since the boundary layer is assumed to be at the origin, it must satisfy the 
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boundary condition y(0) = a. But x = 0 corresponds to £ = 0 according to 
(12.64); hence,y' = a at £ = 0. Then, oc = a0 and 

yi=a + b0$ (12.66b) 

Since the boundary layer is assumed to be at the origin, the outer expansion 
must be valid at x = 1. Thus, we seek an outer expansion in the form 

y°(x;e)=y0(x) + --

which, when substituted into (12.1) and ,y ( l ) = p\ yields 

y'o+yo=0 7 o ( l ) = /3 

Hence, 

yo~Coe~x so that Co-Be 

and 

y = p V " * + ••• (12.67) 

To match (12.66b) and (12.67), we express the former in terms of x and 
obtain 

/ = a + — 
e 

which, when expanded for small e with x being kept fixed, yields 

I — if bQ*0 

Next, we express (12.67) in terms of £ and obtain 

which, when expanded for small e with £ being kept fixed, yields 

(yoy =/&+••• (12.69) 

Equating (12.68) and (12.69) according to the matching principle demands that 
b0 - 0 and a = Be, which is not true, in general. Hence, the case v> 1 must be 
discarded. 

When v < 1, the limiting form of (12.65) as e 0 is 

dy1 

— =0 (12.70a) 

whose solution is 
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Puttingy = a at % = 0 yields a0 = a, and hence, 

y = a (12.70b) 

To match (12.67) with (12.70b), we note that (y°)! is still given by (12.69) 
and that 

( y y =<* 

because yl is a constant. Again, the matching principle demands that a = Be, 
which is not true, in general. Hence, the case v < 1 must also be discarded. 

When v = 1, the limiting form of (12.65) as e -*• 0 is 

d2yl dy'1 

- 4 - + — =0 (12.71) 
d? d% v ' 

whose general solution is 

Putting y = a when £ = 0 gives 

a0+b0-<x or a0=a-b0 

Hence, 

y ' = « - b0 +b0eS (12.72) 

To match (12.67) with (12.72), we note that (y°)( is still given by (12.69). 
Expressing (12.72) in terms of x, we have 

y = t Y - 6 0 + M ~ * / e 

which, when expanded for small e with x being kept fixed, yields 

(yy=cc-b0 (12.73) 

Equating (12.69) and (12.73) according to the matching principle demands that 

a-b0=(k or b0=a-Be 

Hence, to the first approximation 

y ° = ^ - X ^ - ' (12.74) 

y = Be + (et - Be)e~x/€ + • • • 

in agreement with those obtained in Section 12.1 by expanding the exact 
solution. 

Since matching has been achieved, our assumption about the location of the 
boundary layer is correct. Moreover, the choice \ - xfe for the inner variable 
yielded an inner expansion that overlaps the outer expansion, and hence, the 
stretching provided with v = 1 is the proper one. We note that the stretchings 
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of the boundary layer provided by v < 1 and v > 1 demanded that a = Be, which 
is not true, in general. The conditions v < 1 and v > 1 are indefinite because 
each of them can be satisfied by an infinite number of values of p. On the other 
hand, the condition v = 1 is definite, and it is usually referred to as the distin
guished limit. It turns out that the proper stretchings are always provided by the 
distinguished limits. Moreover, the limiting forms (12.66a) and (12.70a) of the 
differential equation when v > 1 and v < 1 are special cases of the limiting form 
(12.71) when v = 1. Thus, one speaks of (12.71) as the least-degenerate form of 
the limiting equation in the boundary layer. Also, it turns out that the proper 
scale provided by the distinguished limit always yields the least-degenerate 
limiting form of the equation in the boundary layer. Therefore, in subsequent 
sections, we will always determine the proper stretchings by choosing the 
distinguished limits. 

Equations (12.74) provide two separate expansions, ,y0 valid everywhere ex
cept in a small interval order 0(e) near the origin and y' valid only in a small 
interval 0(e) near the origin. Althoughy° andjv' have overlapping domains, one 
needs to switch from one expansion to the other if a numerical solution is de
sired over the whole interval. Moreover, the switching location is not known 
precisely. To circumvent this difficulty of switching from one expansion to 
another, one usually combines both expansions into a so-called composite 
expansion denoted by the superscript c and defined by 

The two alternatives in (12.75) are equivalent because (y°)' = (y')° according 
to the matching principle. This expression shows that the composite expansion 
is formed by adding the inner and outer expansions and subtracting their com
mon part (y°)' or (y')° from the result. Expansion (12.75) agrees with the 
outer and inner expansions in their respective domains of validity because 

yc =yo + y _ (yoy = y o + y i . jyy (12.75) 

{ y c ) o = ( y o ) o + ( y i ) o _ [ ( y i ) 0 ] o 

But (f°)° =f°, hence 

(y°r=y° [(/)°r=(yr 
and 

(yc)° =/ ,o 

Also, 

(yc)' = (y°y + 
But ( / ' ) ' = / ' , hence 

and 
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0 0 ' = / (12-77) 

Since yc reproduces the outer expansion in the outer domain and the inner ex
pansion in the inner domain, we postulate that it is valid everywhere. 

In the present example, the common part between y° and y1 is given by 
either (12.69) or (12.73), that is, 

(y/=(/y .jfe 
Hence, 

yc = p V - * + (a - 0e>~* / e + ' * * (12.78) 

Letting e 0 in (12.78) with x being kept fixed yields 

0 > c ) ° = p V - * + • • • = / ' 

Expressing (12.78) in terms of £, we have 

yc - Be1 " e * + (a - Be)e~x + • • • 

which, when expanded for small e with £ being kept fixed, yields 

(yc)1 =3e + (a- Be)e~% + •••=/' 

Thus, as expected, yc reproduces the inner and outer expansions in their respec
tive domains of validity. Hence, it is not surprising that (12.78) is in close agree
ment with the exact solution everywhere, as shown in Figure 12-7. We took e = 
0.1 so that the two solutions can be distinguished from each other. 

Before concluding this section, we compare (12.78) with (12.52) obtained by 
using the method of multiple scales. Whereas the method of matched asymptotic 
expansions yields a composite expansion that is separable in the outer and inner 
scales, the method of multiple scales yields a nonseparable expansion. Moreover, 
in the case of equations with variable coefficients, the inner variable may be a 
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Figure 12-8. Comparison of the method-of-multiple-scales solutionym with the composite 
expansion yc and the exact solution ye for c = 0.1, 0 = 1.0, and a = 0.0. 

nonlinear rather than a linear function of x. Letting e -+ 0 with x being kept 
fixed, we find that (12.52) and (12 .78) yield the same outer expansion. Putting 
x = e£ and letting e -*• 0 with | being fixed, we find that (12.52) and (12.78) also 
yield the same inner expansion. Thus, (12.52) and (12.78) agree in the outer 
and inner domains. However, the presence of the extra factor exp (x ) in (12.52) 
makes it agree more closely with the exact solution, as shown in Figure 12-8 for 
larger values of e. This does not mean that the method of multiple scales is 
superior to the method of matched asymptotic expansions because the applica
tion of the method of multiple scales to nonlinear differential equations, espe
cially partial-differential equations such as the Navier-Stokes equations, is not 
straightforward. 

12.4. Higher Approximations 

To determine a higher-order asymptotic expansion of (12.1) and (12.2), we 
need to determine an outer expansion and an inner expansion, match them, and 
then form a composite expansion. 

OUTER EXPANSION 
We seek an outer expansion in the form 

This expansion is expected to satisfy the boundary condition ^ ( 1 ) = B because 
the boundary layer is at the origin. Hence, substituting (12.79) into (12.1) and 
the condition y(l) - B and equating coefficients of like powers of e, we have 

(12.79) 

7 o + ^ o = 0 y0(l) = 8 

y\ +yi =-7o 7 i ( i ) = o 

(12.80) 

(12.81) 



As before, the solution of^o is 

Then, (12.81) becomes 

y\ + y i =-i3eI_x 

whose general solution is 

yx = cxe'x - Bxe1~x 

But yx (1) = 0, hence c, = Be. Therefore, 

y° ^Be1'" + eB(l- x)e*-x + (12.82) 

INNER EXPANSION 
To determine an inner expansion, we first change the independent variable 

f rom* to £ -x/e in (12.1),add a superscript / to j>,and obtain 

d2y' , dy' 
- ~ ~ + (1 + e 2 ) — + - ' 2 w » 
d\2 v ' d% 

• + (1 + e 2 ) -—- + e(l - e 2 ) / ' = 0 (12.83) 

Since the boundary layer is at the origin, the inner expansion must satisfy the 
boundary condition y = a at x = 0. But x = 0 corresponds to £ = 0, hence 

y ' ( 0 ) = a (12.84) 

Now, we seek an inner expansion in the form 

y-roCO + er, (*)+••• ( 1 2 - 8 5 ) 

Substituting (12.85) into (12.83) and (12.84) and equating coefficients of like 
powers of e, we have 

y'o + y o = 0 r o ( 0 ) = a (12.86) 

Y[ + Y'x = - Y0 Y, (0) = 0 (12.87) 

The general solution of Y0 is 

Y0 =a0 +b0e~K 

Putting Yo(0) = a gives 

a = a0 + b0 or a0~a~b0 

and hence, 

Y0 ~a - b0 + b0e~* 

Then, (12.87) becomes 

r[ + Y\ =-(a-b0)-b0e-* 



whose general solution is 

Yx =a 1 +M-*- (a-M! + Me'* 
Putting Yx (0 ) = 0 gives 

ax + bx = 0 or ax = -bx 

and hence, 

r, = - 6 , +bieS- (oc- b0)^ + b 0 ^ 

Therefore, 

y = a - 6 0 + bQe~% + e{-bx + bxe~K - (oc- bQ)% + bote'*] + • • • (12.88) 

where the remaining constants b0 and 6, need to be determined from the 
matching condition. 

MATCHING 
To match the outer expansion (12.82) and the inner expansion (12.88), we use 

the matching condition (y°J = (y')°. Since we have two terms in each of them, 
we need to determine .the first two terms in each of (y°J and (yl)°. Expressing 
(12.82) in terms of £ = x/e, we have 

which, when expanded for small e with £ being kept fixed, yields 

(y°y=Be + e8e(l - £ ) + ••• (12.89) 

Expressing (12.88) in terms of x, we have 

y = a - b0 + b0e-x/€ + e^-bx + bxe~xle - (a - b0) j + ̂ e _ x / c j + • • • 

which, when expanded for small e with x being kept fixed, yields 

(yl)° =a-b0-(cx-bo)x-€bx+-- (12.90) 

Equating (12.89) and (12.90) according to the matching principle, we have 

Be + eBe(l - £) = a - b0 - (a - b0)x - ebx 

which, since £ =x/e, can be rewritten as 

Be - Bex + eBe =ct- b0 - ( a - b0)x - ebx (12.91) 

Equating coefficients of like powers o f f in (12 .91 ) yields 

Be - Bex = a- bQ - (a- bQ)x (12.92) 

Be = -bx (12.93) 
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If the boundary layer is where it was assumed to be, the stretching transforma
tion is correct, and there are no algebraic errors, the matching conditions will be 
consistent, and hence, they can be solved for b0 and bx. Equating the coeffi
cients of like powers of x in (12.92) gives 

Be ~a - b0 Be = a - b0 

which are consistent. Hence, b0 = a - Be.lt follows from (12.93) that bx = -Be. 
Hence, (12.88) becomes 

/ = Be + (a - Be)e'* + e[Be- Bee~% - Be% + (a - Be)\e~* ]+••• (12.94) 

As mentioned in Section 12.1, one can alternatively perform the matching by 
using intermediate expansions. For example, let us consider the intermediate 
variable rj = x/e 1 / 2 /which yields a stretching that is intermediate between x and 
| = x/e. Expressing x in terms of 17, we rewrite (12.82) as 

yo = p V c , / , T > + €0(1 - e 1 / s i 7 ) e 1 - e , / i , » + • • • (12.95a) 

which, when expanded for small e with r\ being kept fixed, yields 

(y0)1 = Be - ell7Beri + e0e(l + { T72) + • • • (12.95b) 

Putting % = r?/e,/2 in (12.88), we have 

/ « « - bo + M - ^ ' / 5 + m ^ ' " - . ^ r ^ 

+ ^ e - ^ " ] + - . (12.96a) 

which, when expanded for small e with 17 being kept fixed, yields 

(yy = a - b0 - el,2(cc - b0)n - ebx + - • • (12.96b) 

Equating (12.95b) and (12.96b) according to the intermediate matching prin
ciple, we find that they match up to 0 ( e ^ 2 ) . Thus, one can only determine b0 

to this order. To match the expansions to 0 ( e ) , one needs to carry out the 
inner expansion to second order. Alternatively, the intermediate matching can 
be performed by subtracting (12.96a) from (12.95a) and then letting e -*• 0 with 
17 being kept fixed. This process will determine b0 and bx. Comparing the inter
mediate matching with the straightforward matching, we conclude that the 
intermediate matching is an unnecessary complication, and hence, we will not 
use it further. 

An attractive alternative to the straightforward matching is Van Dyke's match
ing principle, which states that 

http://Be.lt
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The m-term inner expansion of (the //-term outer expansion) equals the n-term 
outer expansion of (the m-term inner expansion) (12.97) 

where m and n may be any two integers that need not be equal. To determine 
the m-term inner expansion of the (n-term outer expansion), we rewrite the first 
n-terms of the outer expansion in terms of the inner variable, expand it for small 
e with the inner variable being kept fixed, and truncate the resulting expansion 
after m terms, and conversely for the right-hand side of (12.97). 

To show the application of van Dyke's matching principle, we use it to match 
the two-term outer expansion (12.82) with the two-term inner expansion 
(12.88). We proceed systematically as follows: 

Two-term outer expansion: y ~ Be1 ~x + e8(l - x)e1 ~x 

Rewritten in inner variable: = Be1 + eB(l - e%)ex ~€* 

Expanded for small e: = Be(\ - e£+ | e 2 £ 2 + • • •) 

+ ep>(l - e| ) ( l - e$ + • • ) 

Two-term inner expansion: = Be + eBe(\ - £) (12.98) 

Two-term inner expansion: y ~ a - b0 + b0e~* + e [-bx + bxe~* 

- (tx-b0)l; + b0!ie-S] 

Rewritten in outer variable: = a ~ b0 + b0e~x^e + e -bx + bxe -x/e 

- ( a - V > - + — e'x<e 

e e 

Expanded for small e: = a - b0 - (a - b0)x - ebx + EST 

Two-term outer expansion: = a - b0 - (pt - b0)x - ebx (12.99) 

Equating (12.98) and (12.99) according to the matching principle (12.97) and 
expressing £ in terms of x , we obtain exactly (12.91). 

It should be noted that there are some special examples for which Van Dyke's 
principle does not apply. Nonetheless, it is systematic and hence widely used. 

In the above example, we can determine as many terms as we want in the 
inner or outer expansions to be sure, with arbitrary constants that must be 
determined from matching. This is not always possible. For example, in de
termining an asymptotic solution for viscous flow past an arbitrary body, one 
must determine a one-term outer expansion, which is used to determine a one-
term inner expansion. Then, one proceeds to determine the second term in the 
outer expansion and uses it in turn to determine the second term in the inner 
expansion, and so on. 
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COMPOSITE EXPANSION 
Once the inner and outer expansions have been determined and matched, and 

hence, all the constants have been determined, we can form a composite expan
sion that is uniform everywhere. To this end, we substitute for 7 0 , 7 ' , and ( 7 0 / 

from (12.82), (12.94), and (12.89), respectively, into (12.75) and obtain 
yc = -x + (a _ ^e-% + e _ xy -x _ ^1 -t + ( a _ ^ e - t j + . . . 

(12.100) 

as a single uniform expansion. 

12.5. Equations With Variable Coefficients 

In this section, we use the method of matched asymptotic expansions to 
determine first-order asymptotic solutions of 

ey"+Pl(x)y' + Po(x)y^O e « l (12.101) 

7 ( 0 ) = a y(l) = B (12.102) 

for special functions px and p0. This problem is treated in Chapter 14 by using 
the WKB approximation and the Langer transformation. Here, we treat two 
examples in which pi(x)¥i0 in [0, 1] and we treat two examples in which 
Pi(x) has zeros in [0,1 ] . 

EXAMPLE 1 
We consider 

ey" - (2x + l ) / + 2y = 0 (12.103) 

As e -*• 0, the order of the differential equation reduces to one, and hence, one 
of the boundary conditions must be dropped. It turns out that, if p j ( x ) > 0 i n 
[0, 1 ] , the boundary layer is at the left end and, if pt(x) < 0 in [0, 1 ] , the 
boundary layer is at the right end. Hence, in this case the boundary layer is at 
the right end, and the outer expansion satisfies the boundary conditiony(0) = a. 
Anyhow the existence of the boundary layer at the right end will be verified if 
the resulting expansions are matchable and the results are mathematically 
consistent. 

We seek an outer expansion in the form 

y°-yo(x) + €yl(x) + ••• (12.104) 

Substituting (12.104) into (12.103) and y(0) = a and equating the coefficients 
of e° on both sides, we obtain 

- ( 2 x + 1 ) 7 0 + 2 7 0 = 0 7o(0) = a (12.105) 

Separating variables, we have 
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dy0 = Idx 

y0 2x +1 

Hence, 

lny0 = l n ( 2 x + l ) + l n c 0 

where c0 is a constant. Then, 

j > 0 = c 0 ( 2 x + l ) 

But ^0 (0 ) = a, hence c0 - a. Therefore, 

y0 = a(2x + 1) 

and 

y° = a ( 2 x + l ) + - - (12.106) 

To determine an expansion valid in the boundary layer, we need to stretch the 
neighborhood of x = 1. Thus, we let 

'H = ^ r or x = l - e " £ (12.107) 
e 

where v must be greater than zero and it is determined in the course of analysis. 
Putting (12.107) in (12.103) and denoting the inner expansion by the super
script i, we have 

d2v' dv' 
e i - i v _ 2 L + € - f ( 3 _ 2 e ^ ) JL- + 2 / = 0 (12.108) 

As e 0, the limiting form of (12.108) depends on the value of v. As discussed 
before, the value of v corresponding to the distinguished limit must be selected. 
Thus, we put v - 1 and rewrite (12.108) as 

d2vl dy1 

- £ + ( 3 - 2 e i | ) - £ - + 2 e y = 0 (12.109) 
d% d\ 

Since the boundary layer is assumed to be at x - 1, it must satisfy the boundary 
condition 7 (1 ) = B. But x = 1 corresponds to £ = 0, hence 

/*(O) = 0 (12.110) 

We seek an inner expansion in the form 

. / - y 0 t t ) + «ri <*) + ••• (12.111) 
Substituting (12.111) into (12.109) and (12.110) and equating the coefficients 
of e° on both sides, we obtain 

r^ + 3r0 = o r o(O) = 0 (12.112) 
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Hence, 

Y0**a0 + b0e-3S 8 = a0+b0 

and 

y = 0-Z>o+Z> o e" 3 | + --- (12.113) 

where b0 needs to be determined from matching the inner and outer expansions. 
Using Van Dyke's matching principle, we proceed as follows: 

One-term outer expansion: y ~ a(2x + 1) 

Rewritten in inner variable: = a(3 - 2e£) 

Expanded for small e: - 3a - 2 ea£ 

One-term inner expansion: ~ 3a (12.114) 

One-term inner expansion: y ~ 8 - b0 + b0e~3 * 

Rewritten in outer variable: = 8 - b0 + b0e~3^1 ~*)/e 

Expanded for small e: = 8 - b0 + EST 

One-term outer expansion: - 8 - b0 (12.115) 

Equating (12.114) and (12.115), we have 

3a = 8 - b0 or b0 = 0 - 3a . 

Hence, 

= 3a + (8- 3 a ) e ' n + ••• (12.116) 

yc = a(2x + 1) + 3a + (8 - 3a) e'H - 3a + • • • 

y = a(2x + 1) + (0 - 3a)e" 3< 1 _ J f>/€ + • • • (12.117) 

Figure 12-9 shows that yc is close to the solution obtained by numerically in
tegrating (12.103) and (12.102). Since the inner and outer expansions are 
matchable and the results are mathematically consistent, our assumption about 
the location of the boundary layer is correct. 

EXAMPLE 2 
As a second example, we consider (12.101) w i thp, (x ) being either positive or 

negative everywhere in [ 0 , 1 ] . 
When pi(x) > 0 in [0, 1 ] , the boundary layer is assumed to be at the left end 

because only this assumption leads to matchable expansions and mathematically 

and 

or 
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by numerically integrating (12.103) and (12.102) for e = 0.2, a = 1.0, and Q = 0.0. 

consistent results. Then, the outer expansion must satisfy the boundary condi
tion y(\) = Bt whereas the inner expansion must satisfy the boundary condition 
7 ( 0 ) = a. We seek an outer expansion in the form 

y - j ' o O O + ey ! ( * ) + • • • (12.118) 

Substituting (12.118) into (12.101) and y(l) = B and equating the coefficients 
of e° on both sides, we obtain 

Pi/o +PoJ;o = 0 y0(l) = B (12.119) 

which is a first-order linear differential equation, and hence, it is solvable. 
Separating variables, we rewrite the equation governing y0 as 

yo Pi 

which upon integration yields 

, (* Po(j) fay — Jr + lnco 
Ji PM 

Hence, 

r r pofr) 

L Ji PM 
yQ = c 0 exp dr 

where the lower limit of integration was taken to be 1 to facilitate satisfaction 
of the boundary condition. Putt ingy Q ( l ) = B gives c 0 = p\ and hence, 

= B exp - — dr-B exp I — dr 
L Ji Pi J Ux Pi J 

and 
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y°=Bexpi^j ~dr + • • • (12.120) 

To determine an inner expansion valid near the origin, we introduce the 
stretching transformation 

or * = i/>0 (12.121) 

Then, (12.101) becomes 

ei -%v + e - » p i ( ep{ )fj£ + p ^ e ^ y . 0 (12.122) 
<*k d\ 

As e 0, Pi (e"£) -* px (0) and Po(e"£) ~* Po(0), where p 0 is assumed to be reg
ular at the origin. Then, (12.122) tends to 

•1-2v^4+e'vpx(0)^-+ e""P»(P) "TT + P o (0 ) y + • • • - 0 (12.123) 

whose limiting form as e -*• 0 depends on the value of v. Choosing v = 1, cor
responding to the distinguished limit, we find that the limiting form of (12.123) 
is 

d2y{ dy1 

^ • • J » . ( P ) ^ - 0 02.124) 

whose general solution is 

yl = a0+b0e-PW (12.125) 

It follows from (12.121) that* = 0 corresponds to £ = 0, and hence, the boundary 
condition 7 (0 ) = a transforms into7'(0) = a. Then, it follows from (12.125) that 

a = a0 + b0 or a0~oi-b0 

and hence, 

y = o - b0 + M~P , ( 0 * (12.126) 

Next, we match the one-term outer expansion (12.120) with the one-term inner 
expansion (12.126). We proceed formally as follows: 

One-term outer expansion: y ~ B exp 

Rewritten in inner variable: = B exp [ f > ] 
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Expanded for small e: 

One-term inner expansion: 

One-term inner expansion: 

Rewritten in outer variable: 

Expanded for small e: 

One-term outer expansion: 

= 8 exp 

= 0exp [fH (12.127) 

= a- b0+b0e-P^te 

= a-b0 + EST 

= a - b0 (12.128) 

We note that exp [-Pi(0)x/e] is exponentially small as e -*• 0 because P i (0 ) > 
0. If pi(0) were negative, exp [~Pi(0)x/€] would have been exponentially large 
as e 0, and hence, the inner expansion could not be matched with the outer 
expansion. Consequently, the boundary layer would be at the right end. Thus, 
the absence of the exponential growth is essential for matching. 

Equating (12.127) and (12.128), we have 

or 

a - b0 =8 exp 

b0-oi- 6 exp 
U o Pi J 

Hence, 

/ = 0exp I I —dr 
W ) Pi 

+ \ ot - 8 exp (o)f (12.129) 

Adding the outer expansion (12.120) to the inner expansion (12.129) and 
subtracting from the result their common part (12.127), we obtain the composite 
expansion 

yc - 8 exp (12.130) 

EXAMPLE 3 
As a third example, we consider a case in which px(x) vanishes at the origin. 

Thus, we consider the equation 



290 BOUNDARY-LAYER PROBLEMS 

ey" + xy'-xy = 0 (12.131) 

subject to the boundary conditions in (12.102). Since the coefficient of y is 
positive, we expect the boundary layer to be at the left„end even if x vanishes 
there. If this is not the way it is, the resulting expansions cannot be matched and 
the results will not be mathematically consistent. 

Seeking an outer expansion in the form 

y°(x)=y0(x) + eyl(x)+-'-

we find from (12.131) that 

xy'o ~xyo=0 

whose general solution is 

y0 = c0ex 

Since the boundary layer is assumed to be at the origin, the outer expansion 
must satisfy .y( l ) = B or y°(l) = B. Hence,y 0 ( l ) = B and 

B = c0e or c0 = Be'1 

Then, 

yo=&ex-x 

and 

y°=Bex-l+-- (12.132) 

To investigate the boundary layer at the origin, we intro'duce the stretching 
transformation 

or x = e"$ v>0 (12.133) 

in (12.131) and obtain 

, , d V dy1 

2
+ S ~ = 0 02.135) 

As e - *0 , the limiting form of (12.134) depends on the value of v. As before, 
only the distinguished limit is chosen. In this case, the distinguished limit is 

djy_ ay 

d? kdi 

corresponding to z> = \. Equation (12.135) is a first-order differential equation 
in dyljd\, and hence, it is solvable. Putting 

dy1 



in (12.135), we have 

whose general solution is 

Hence, 

which upon integration yields 
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dv 

di 

y = a 0 f e - C / ^ d r + f c o 

where the lower limit in the integral was taken to be zero to facilitate satisfaction 
of the boundary condition. Since x = 0 corresponds to £ = 0 according to 
(12.133), imposing the boundary condition >>(0) = a or yl(0) = a leads to 

a - bo 

Hence, 

y = a 0 f e<l<2)ri dr + a (12.136) 

where the constant a0 needs to be determined by matching the inner and outer 
expansions. 

To match the one-term outer expansion (12.132) with the one-term inner 
expansion (12.136), we proceed as follows: 

One-term outer expansion: y ~* Bex~1 

Rewritten in inner variable: ~Be€ 1 f - 1 

Expanded for small e: = Be'1 (1 + e 1 / 2 £ + • • •) 

One-term inner expansion: = Be'1 (12.137) 

•I 
One-term inner expansion: y ~~ <*o I e " ( l / : ) T dr + a 

Jo 

= a0 I e<x'%)r dr + a Rewritten in outer variable: 



One-term outer expansion: = — j = - + a (12.138) 
V 2 
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Expanded for small e: = a0 I e~^2^ dr + a + • 

where the integral is evaluated as follows. Putting t - r/y/2, we have 

f"e-<"^'dr = V 2 / " V * - V 2 ^ = * S 

J 0 J 0 2 V 2 
according to (3.25). Equating (12.137) and (12.138) yields 

P ^ 1 = _ _ _ + o t or flo51^^ 1 - a ) 

Hence, the outer and inner expansions are matchable and the results are math
ematically consistent, thereby justifying our assumption that the boundary layer 
is at the origin. Substituting for a0 in (12.136), we have 

y = a + ̂ ( p > - 1 -a) r V ( " / 2 ) r J dr + --- (12.139) 

Finally, we determine a single composite uniform expansion by adding the 
outer expansion (12.132) to the inner expansion (12.139) and subtracting from 
the result their common part (12.137). Thus, we have 

yc = Bex~1 + a + ̂  (Be'1 ~ a) f ? e'^2^ dr - Be'1 V2 
{pe ' - a) 

o 

or 

y^Be"'1 -(Be'1 -a) [l - ^~ e'W2>TdT\+-- (12.140) 

Figure 12.10 shows that the composite expansion yc is very close to the exact 
solution ye even for e = 0.2. When e = 0.1, the composite expansion is indis
tinguishable from the exact solution. 

EXAMPLE 4 
As a fourth example, we consider a case in which px(x) has a simple zero at 

a point inside the interval [0, 1 ] , thereby leading to an interior "boundary 
layer." Thus, we consider the differential equation 
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Figure 12-10. Comparison of the composite expansion yc with the exact solution ye 

obtained by numerically integrating (12.131) and (12.102) for e = 0.2, a - 4.0,0 = 1.0. 

ey" + (x-{)y'-{x-\)y = Q (12.141) 

subject to the boundary conditions (12.102). In this case, p1(x) = x - ~ is nega
tive for x < \ and positive for x > \. Consequently, our expectation about the 
location of the boundary layer needs to be examined more closely. It turns out 
that there are no boundary layers at the end points. Instead, there is a boundary 
layer at x = \. This statement is checked a posteriori. 

Seeking an outer expansion in the form 

y°=y0(x) + eyl(x) + - ' 

we obtain from (12.141) that 

( * - i > o - ( * - i ) y o = o 

Its general solution is 

yo = c0ex 

which is expected to be valid everywhere except in a small neighborhood sur
rounding x = \. In the interval x> \,y° must satisfy the boundary condition 
y°(l) = 8. Hence, c0e = 8 and 

y°r=Bex-x + ••• (12.142) 

where the subscript r indicates the right part of the interval. In the interval x < 
\, y° must satisfy the boundary condition y°(0) = a. Hence, c0=a and 

yf = aex + ••• (12.143) 

where the subscript / indicates the left part of the interval. 
Next, we investigate the neighborhood of x = \ by introducing the stretching 

transformation 
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£ = ^ - ~ - or x = \+evZ v>0 (12.144) 

Then ,(12.141) becomes 

^ + ^ - ^ ' = 0 (12.145) 

As e -»• 0, the limitirig form of (12.145) depends on the value of v. As before, we 
choose the distinguished limit 

d2yl dy( 

< > 2 - , 4 6 > 

corresponding to v = \. As in the preceding section, the general solution of 
(12.146) is 

y « b0 + a0 f * e " < 1 / 2 ) T ' dr (12.147) 

where the lower limit is taken to be £ = 0 corresponding to the assumed location 
x = \ of the boundary layer. The constants a0 and b0 need to be determined 
by matching inner and outer expansions. 

To match the one-term outer expansion (12.142) with the one-term inner 
expansion (12.147), we proceed as follows: 

One-term outer expansion: y ~ Be* ~1 

Rewritten in inner variable: = Bee>/2*~ 

Expanded for small e: = Be~l/2(l + e 1 / 2 £ + • • •) 

One-term inner expansion: =Be~ll2 (12.148) 

One-term inner expansion: y ~- b0 + a 0 I e^ 1 / 2 ) 7 " 2 dr 

r[x- (1/2)1 /e , / J 

Rewritten in outer variable: = b0 + a0 I e - 0 / 2 ) T dr 

Expanded for r nail e: =b0 +a0 l e'^2^* dr + - • • 

I— 
One-term outer expansion: = b0 + °° (12.149) 

V 2 
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where the integral was evaluated in the preceding example. Equating (12.148) 
and (12.149), we have 

6 0 / - ^ = ( k - " J (12.150) 
V 2 

which is an equation governing a0 and b0. 
To determine a second equation for aQ and b0, we match the inner expansion 

(12.147) with the outer expansion (12.143). Following the asymptotic matching 
procedure, we find that 

0 ' ) ° = b0 + a0 [ < T ( 1 / 2 ) t ' dr = b0 - a0 f e<x^r" dr 

Hence, 

, o „ ^ = tte./a ( m 5 1 ) 

Solving (12.150) and (12.151) yields 

b0 = 4(/k"1/2 + ocex'2) aQ = - i = (Be'1'2 - c* »/2) 
V 2 7 T 

and hence, 

y = { (Be-xl2 + aexl2) + -~=(6e-xf2 - a e 1 ' 2 ) ^ e<1'2^ </>+•-• 

(12.152) 

In this case, we cannot form a single composite expansion that is uniformly 
valid over the whole interval. Instead, we form two composite expansions, one 
valid in [0, { ] and the other valid in [ { , ! ] - Thus, we put 

= <*?* +4 (Be-1'2 + ote1'2) 

+ -L,(Be'x'2 - aex'2) | e^1'2^ dr-ae'l2 + V2i 'Jo 

or 

yf = <xex+(8e-l!2-<xe1!2) U+-^= I e " ( l / 2 > T ' dr) + ••• (12.153) 
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Figure 12-11. Comparison of the composite expansion yc with the exact solution ye 

obtained by numerically integrating (12.141) and (12.102) for e = 0.1, a - 1.0, and 0 = 1.0. 

Similarly, we form 

yc

r=Bex-x + (ote1'2 - p V , / 2 ) ^ - ~= jf e~WT* dr j + •• (12.154) 

Figure 12-11 shows t h a t j c is very close to the exact solutionye for e = 0.1. 
In this example, px(x) is monotonically increasing, and there is only an interior 

boundary layer. When p i ( x ) is monotonically decreasing, the situation is more 
complicated and boundary layers may exist at the boundaries in addition to an 
interior point. Currently, this problem is being vigorously investigated by many 
researchers. 

12.6. Problems with Two Boundary Layers 

In the preceding sections, we considered problems having one boundary layer. 
In this section, we consider a problem with two boundary layers; specifically, 
we consider 

e2yiv- (1 +x )V ' = l (12.155) 

y(0) = Ot y'(0) = Q y(l) = y y'(l) = 8 (12.156) 

In this case, the order of the highest derivative is greater than the order of the 
second term by two, suggesting that there are two boundary layers, one at each 
end. This suggestion will be verified a posteriori by checking the mathematical 
consistency of the results. 

OUTER EXPANSION 
We seek a two-term outer expansion in the form 

y'-yoW+eyrix)*-- (12.157) 

Substituting (12.157) into (12.155) and equating coefficients of like powers of 
c, we obtain 
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-(1 + x ) V o = 1 (12.158) 

-(1 + x ) y i ' = 0 (12.159) 

Equation (12.158) can be rewritten as 

„ _ 1 

which can be integrated to give 

y'o = T ~ + A o 

and hence, 

y0 =ln (1 + x)+A0x + B0 (12.160) 

where A0 and BQ are arbitrary constants. The general solution of (12.159) is 

yx=Axx + Bx . (12.161) 

where Ax and Bx are arbitrary constants. Therefore, 

y° = ln(l + x) +A0x + B0 + e(Axx + Bx) + • • • (12.162) 

where this outer expansion is not expected to satisfy any of the boundary 
conditions. Hence, it needs to be matched with two boundary-layer expansions, 
one valid near x = 0 and the other valid near x = 1. 

INNER EXPANSION NEAR x = 0 
In this case, we introduce the stretching transformation 

£ = ^ or x = e"? v>0 (12.163) 
e 

in (12.155), denote the inner expansion near x = 0 by the superscript /, and 
obtain 

- 2 - 4 1 / U y _ --2V / 1 . cVy\2 U y _ i 
dt< 6 ( 1 + e ? ) d%2 - 1 

As e 0, the distinguished limit corresponds to v = 1. Then,./ is governed by 

d\' cfV 

^ - ( l + 2 e £ + e 2 £ 2 ) - ^ - = e 2 (12.164) 

We seek a two-term inner expansion in the form y = y0(£) + e r 1 ( 0 + - - (12.165) 

Substituting (12.165) into (12.164) and equating like powers of e, we have 
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Yo
v-Yo' = 0 (12.166) 

Y[° - Y" = 2iY'o (12.167) 

This inner expansion must satisfy the boundary conditions at x • 0, correspond
ing to £ * 0. Then,^(O) = a transforms into 

/ (0 ) = a (12.168) 

Since 

, _dy _dy d% _ 1 dy 
y ~dx~dldx~~edi 

the boundary condition j/(0) = 0 transforms into 

~ ( 0 ) = tf (12.169) 
a? 

Substituting (12.165) into (12.168) and (12.169) and equating coefficients of 
like powers of e, we have 

y o (0 ) = a ^o(0) = 0 (12.170) 

r»(0) = 0 Y[(0) = B (12.171) 

We note that the effect of B appears at first order and this is the reason we are 
determining two terms in the expansion. 

The general solution of (12.166) is 

Y(r = a0 + b0% + c0e~* + d0e^ 

where the constant d0 must be zero; otherwise, Y0 would grow exponentially 
with |, making it unmatchable with the outer expansion. Then, the boundary 
conditions (12.170) demand that 

a0+c0=a b0 - c 0 = 0 

Hence, b0 = c0 and a0 = a - c0, so that 

r 0 = a + c0(<?-* + £- 1) (12.172) 

In this case, it is advantageous to perform the matching at this stage because c0 

turns out to be zero. To match a one-term outer expansion with a one-term inner 
expansion, we take m = n = 1 in (12.97) and proceed as follows: 

One-term outer expansion: y ~ In (1 + x) + A0x + B0 

Rewritten in inner variable: = In (1 + e£) + G4 0 £ + BQ 

Expanded for small e: = e| + eA0% + B0 + • * * 

One-term inner expansion: =Z?0 (12.173) 
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One-term inner expansion: y ~ a + c0(e~* + £ - 1) 

Rewritten in outer variable: = a + c0(e~x'€ + — 1) 

e 

Expanded for small e: = a - c0 + ~ + EST 

f a if c 0 = 0 
One-term outer expansion: = i £o* ^ c (12.174) 

Equating (12.173) and (12.174) demands that 

c 0 = 0 B0=a (12.175) 

and 

Y 0 = a (12.176) 

Substituting for Y0 in (12.167) gives 

Y[v- Yx=0 

whose general solution is 

Yx=ax+bx^ + cxe^ + dxei 

Again, dx must be zero; otherwise, Yx would grow exponentially with £, making 
it unmatchable with the outer expansion. The boundary conditions (12.171) 
demand that 

ax + cx = 0 bx - C j = 8 

Hence, ax - -cx and bx =cx + 8 so that 

IS + + 1) (12.177) 

Therefore, 

/ = a + e[/3| + c,(<T* + ? - 1)] + • • • (12.178) 

Next, we match the two-term outer expansion with the two-term inner expan
sion and proceed as follows: 

Two-term outer expansion: .y ~ In (1 + x ) + A0x + a + e(A xx + Bx) 

Rewritten in inner variable: = In (1 + e£) + eA0% + a + e(eA t% + Bx) 

Expanded for small e: = e£ + €A0% + a + e2Ax% + eBx + • • • 

Two-term inner expansion: = a + e(£ + A 0£ + Bx) (12.179) 

Two-term inner expansion: y ~ a + e[0£ + ct(e~^ + £ - 1)] 
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Rewritten in outer variable: = a + e — + cx (e"x^ + — - 1} 

Expanded for small e: = a + /3x + c,x - ec, + EST 

Two-term outer expansion: = a + Bx + cxx - ecx (12.180) 

Expressing (12.179) in terms of x and equating it to (12.180), we have 

a + x +A0x + eBx = a + Bx + cxx - ecx 

Hence, 

1 + A0=B+cx and Bx=-cx (12.181) 

INNER EXPANSION NEAR x = 1 
In this case, we introduce the stretching transformation 

f = ^ - ^ or x=\-ev$ v>0 (12.182) 
€ 

in (12.155), denote the inner expansion near x = 1 by the superscript /, and 
obtain 

d V d V 
6 d?4 ' ^ C ° 1 

As e 0, the distinguished limit corresponds to v = 1. Then,7 7 is governed by 

d4v7 d2v7 

- 2 1 - (4 - 4ef + e 2 f 2 ) - e 2 (12.183) 

We seek a two-term expansion for y1 in the form 

/ = + ••• (12.184) 

Substituting (12.184) into (12.183) and equating coefficients of like powers 
of e, we have 

Yi£-4Y'o = 0 (12.185) 

y l u - 4 y ; ' = - 4 r r 0 ' (12.186) 

The present inner expansion must satisfy the boundary conditions at x = 1, 
corresponding to f = 0. Then,7(1) = y transforms into 

y'{0)*y (12.187) 

Since 
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the boundary conditiony'(\) = 5 transforms into 

^ ( 0 ) = -e5 (12.188) 

Substituting (12.184) into (12.187) and (12.188) and equating coefficients of 
like powers of e, we obtain 

YQ(0) = y ?o(0) = 0 (12.189) 

r , ( 0 ) = 0 ? i ( 0 ) = -5 (12.190) 

The general solution of (12.185) is 

Y0 = a0 + £0r + c > ~ 2 f + </V2r 

where d0 must be zero; otherwise, Y0 would grow exponentially with J and 
could not be matched with the outer expansion. Then, the boundary conditions 
(12.189) demand that 

<*o + c0 = 7 t>0 - 2? 0 = Q 

Hence, bQ = 2c 0 and 3a = y - c0, so that 

Y0 = 7 + Co(e~2i + 2t- 1) (12.191) 

Again, we match a one-term outer expansion with a one-term inner expansion 
and proceed as follows: 

One-term outer expansion: y ~ In (1 + x) + A0x + a 

Rewritten in inner variable: = In (2 - e f ) + A0(1 - e£) + a 

Expanded for small e: = l n 2 - { e f + y4 0 - eA0$ + <* + ••• 

One-term inner expansion: = A0 + a + In 2 - (12.192) 

One-term inner expansion: y ~ 7 + c 0 ( e " 2 f + 2f - 1) 

Rewritten in outer variable: = 7 + c 0 ^e~2 6 1 ~ * ) + — — — - l j 

2c (1 - x) 
Expanded for small e: = 7 + —— 1 - + EST 

One-term outer expansion: = | ? Co(\ x) ^ ^ (12.193) 

Equating (12.192) and (12.193) demands that c 0 = 0 and 

v 4 0 + a + ln2 = 7 or A0=y- a - In 2 (12 .194) 



302 BOUNDARY-LAYER PROBLEMS 

Hence, 

Y0=y (12.195) 

Substituting for Y0 In (12.186), we have 

Y[V-4Y\' = 0 

whose general solution is 

Yi + c V _ 2 f + 2 i " 

Again, dx must be zero in order that the inner expansion be matchable with the 
outer expansion. Then, the boundary conditions (12.190) demand that 

a, + c, = 0 bx - 2cx = -5 

Hence, ax = -cx and = 2c, - 5, so that 

? , = -5f + c, (<T2 f + 2f - 1) (12.196) 

Next, we match the two-term outer expansion with the two-term inner expan
sion and proceed as follows: 

Two-term outer expansion: j> ~ In (1 + x ) + J 4 0 X + a + e(A ,x + Bx) 

Rewritten in inner variable: = In (2 - e f ) + A 0 ( 1 - e f ) + a 

+ €(A1-eAd + Bl) 

Expanded for small e: = In 2 - \ef + A0 - €A0$ + a 

+ eAx - e 2 4 , f + eBx + •• • 

Two-term inner expansion: = J 4 0 + a + In 2 + e(A x + Bx - | f - y 4 0 f ) 

(12.197) 

Two-term inner expansion: y~y + e [ -6f + cx(e~2* + 2f - 1)] 

« . . f 5(1 - x ) ^ 
Rewritten in outer variable: = 7 + e i +Ci 

2 ( 1 - x ) 

Expanded for small e: = y - 5(1 - x ) + 2c,( l - x ) - ec, + EST 

Two-term outer expansion: * y + (2c, - 5 ) (1 - x ) - ec, (12.198) 

Expressing (12.197) in terms of x and equating it to (12.198), we have 

A0 + a + l n 2 - ( j + ^ 0 ) ( 1 -x) + e(Ax +Bl) = y + (2cx - 6 ) (1 - x ) - ecx 

which yields (12.194) and 
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4 - / i 0 = 2 c , - 6 At+B^-Ci (12.199) 

Substituting for A0 from (12.194) into (12.181), we obtain 

Bx = - c , = - 7 + a + /3- 1 + ln2 (12.200) 

whereas substituting for A0 and #i f r o m (12.194) and (12.200) into (12.199), 
we obtain 

?! * | ( a + 5 - 7 - j + l n 2 ) (12.201) 

At = - £ ( 3 a + 20 - 37 + 6 - | + 31n2) (12.202) 

Therefore, all the arbitrary constants in the outer and inner expansions have 
been expressed in terms of the boundary values. 

Finally, a composite expansion can be obtained as follows: 

where (yf and (y1)0 are given by (12.180) and (12.198). The result is 

yc = l n ( l + x ) + AQx + a + e(Axx + Bx) + a + e[0£ - Bx(e'% + £ - 1)] 

+ 7+€[-8$ + cx(e~2! + 2£- 1)] - a - Bx + Bxx - eBx - y 

- (2c\ - 5) (1 - x) + ecx 

or 

7 C = a + In (1 + x ) + (7 - a - In 2)x + e [ - j ( 3 a + 2j3 - 37 + 5 - 4 

+ 3 In 2)x - (7 - a - B + 1 - In 2) (1 - e"*/*) 

+ j ( a + 5 - 7 - ^ + In 2 K 2 < J "*>/€] + • • • (12.203) 

Figure 12-12 shows that.yc is close to the exact solution. 

y 

2.0 J 

Figure 1 2 - 1 2 . Comparison of the composite expansion yc with the exact solution ye 

obtained by numerically integrating (12.155) and (12.156) for e = 0.2, a = 0 * 1.0, and y = 
6 =-1.0. 
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12.7. Multiple Decks 

In all preceding examples, only one distinguished limit exists in a given bound
ary layer. In this section, we consider a problem in which more than one dis
tinguished limit exist in a given boundary layer. When two distinguished limits 
exist, the resulting expansion consists of two inner expansions in addition to 
the outer expansion. The domains of validity of each of them are often called 
decks, and hence, the problem is usually referred to as a triple-deck problem. 
Thus, when two or more distinguished limits exist in a given boundary layer, one 
speaks of a multiple-deck problem. Here, we consider a case with two distin
guished limits, that is, a triple-deck problem. 

We consider the problem 

e 3 / ' + xV + ( x 3 - e)y = 0 (12.204) 

^ (0 ) = a y(l) = 0 (12.205) 

Since the coefficient of y is positive, the boundary layer is expected to be at 
the origin. Hence, the outer expansion must satisfy the boundary condition 
7 (1 ) = 3 and it is not expected to satisfy the boundary condition 7 (0 ) s ot. 

We seek an outer expansion in the form 

y°=yo(x) + ey1(x) + - -

Substituting y° into (12.204) and 7 (1 ) -B and equating the coefficient of e° 
on both sides, we obtain 

x 3 7 o + * 3 7 o = 0 7oO ) = 0 (12.206) 

The general solution for y0 is 

yo = c0e'x 

j3 that c0 = fte. Hence, 

7 o = p V " x 

y = 0 e + (12.207) 

which does not satisfy the boundary condition at the origin. 
As before, to investigate the neighborhood of the origin, we introduce the 

stretching transformation 

£ = ~ or x = c"£ P > 0 (12.208) 
e 

into (12.204) and obtain 

e3-2»£l+ €2»f d± + ( € 3 ^ 3 . e ) y s 0 (12.209) 

It follows from 7oO) = 

and 
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As e-»-0, the term 0(e3v) is small compared with e 2 v since p>0. Hence, the 
dominant part of (12.209) is 

e 3 - 2 ^ + e a v t 3 ^ _ ^ + . . . I B ( ) ( 1 2 2 1 0 ) 

dk a? 

The distinguished limits can be obtained by balancing any two terms in (12.210) 
3 
4 Balancing the first and second terms demands that 3 - 2v = 2v or v = | . Then, 

(12.209) becomes 

whose dominant part is a trivial case y = 0. Hence, this case must be discarded. 
Balancing the first and third terms in (12.210) demands that 3 - 2 i > = l o r i > = l . 
Then, (12.209) becomes 

e ~ ; + e 2 | 3 - | + ( e 3 * 3 - e)y = 0 (12.21 la ) 

whose dominant part is nontrivial, and hence, this case must be included. Balanc
ing the second and third terms in (12.210) demands that 2v= 1 or v = ~ . To 
distinguish this case from the preceding one, we use the variable f instead of £ so 
that £ = x/e and f = x/e 1 / 2 . Then, (12.209) becomes 

whose dominant part is nontrivial, and hence, this case must also be included. 
The stretching \ = xje corresponding to v = 1 describes a deck (layer) close to 
the origin, which we refer to as the left deck. The stretching f = jc/e^2, cor
responding to v = j, describes a deck that is between the left deck and the 
outer expansion fright deck). Consequently, we refer to this deck as the middle 
deck. In the case of viscous-inviscid interactions, these decks are usually referred 
to as the lower, middle, and upper decks, respectively. 

It follows from (12.21 la ) that the leading term Y0 in the left-deck expansion 
y is governed by 

d2Y0 

d? 
- YQ=0 

whose general solution is 

y 0 =a0c-* + b0e* 

where b0 must be zero; otherwise, Y0 would grow exponentially with f, making 
it unmatchable with either the middle or right deck. Since this deck is valid at 
the origin, it must satisfy the boundary condition^(0) = a. But* = 0 corresponds 
to % = 0, hence,^'(0) = a. Then, it follows that a0 = a, so that 
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and 

+ (12.212) 

It follows from (12.21 l b ) that the leading term Y0 in the middle-deck expan
sion ym is governed by 

?Y0 -Y0=0 

Separating variables, we have 

dY0_dt 

Yo "Y 
which upon integration gives 

In Y0 = - - ~ + ]nd0 

Hence, 

? o = ^ " 1 / 2 f i 

and 

ym=d0e-1'2!1 + ••• (12.213) 

Since x = 0 corresponds to ? = 0, it follows from (12.213) that ym -+0 as 
t -* 0, and hence, it cannot satisfy the boundary condition y(0) - a. Therefore, 
the constant d0 needs to be determined from matching ym with either / or 

We note that / cannot be matched directly w i t h y because 

< y ) ° = 0 (y°)l = Be 

Hence, ym must be used to bridge the gap between / and y°. To match ym with 
y , we note that 

{ym)°=d0 and (y°)m=Be 

Hence, d0-Be and 

+ . . . (12.214) 

To match y with yl, we note that 

( y y = 0 and O ' ) m = 0 

and hence, ym and / are matchable. 
Finally, we form a composite expansion as follows: 
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0.0 I 1 1 1 1 *- x 
.00 .25 .50 .75 1.00 

Figure 12-13. Comparison of composite expansion yc with the exact solution ye obtained 
by numerically integrating (12.204) and (12.205) for e = 0.05, a *= 2.0, and 0 = 1.0. 

yc = y o + ym + y _ (yOyn _ 

Hence, 

yc = ^i-x + ^ 1 - 0 / 2 ^ ) + ae-s _ 8 e + . . . (12.215) 

It follows from (12.215) that 

{yc)m = j 3 e 1 _ 1 / 2 f 2 =ym 

O c ) 7 = a e - 5 

and therefore, we postulate that 7 C is vahd everywhere in [ 0 , 1 ] . Figure 12-13 
shows that yc is close to the exact solution. 

12.8. Nonlinear Problems 

To conclude this chapter, we consider two nonlinear problems. 

PROBLEM 1 
As a first problem, we consider the case in which a contraction rather than a 

stretching transformation is needed. Specifically, we consider 

/' + - / + eyy =0 0 < e « l (12.216) 
x 

7(1) = 0 and y(°°) = 1 (12.217) 

It turns out that the zeroth-order expansion is uniform and that the nonuni
formity appears at first order. We note that the small parameter does not multiply 
the highest derivative. In this case, as in nonlinear-oscillation problems, the 
domain is infinite, thereby causing the nonuniformity. 

We seek a two-term straightforward expansion in the form 
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y = y0(x) + €yx(x) + >-' (12.218) 

Substituting (12.218) into (12.216) and (12.217) and equating coefficients of 
like powers of e, we have 

Order e° 

Order € 

/o' +Vo=0 (12.219) 

Jo ( l ) = 0 7 o H = 1 (12.220) 

y'I + ~y'i =-y0y'o (12.221) 

7 , (1 ) = 0 7 i H = 0 (12.222) 

Mdtiplying (12.219) by x2, we rewrite it as 

which can be integrated once to yield 

Then, 

which upon integration gives 

x2^- = a x , "0 
dx 

dy0 _ a0 

dx x2 

x 

Imposing the boundary conditions (12.220), we have 

-Oo + b0 -0 and b0 = 1 

Hence, a0 = b0 =» 1 so that 

yo = -— + b0 (12.223) 

7o = l - - (12.224) 
x 

which is uniform because it satisfies the reduced differential equation and 
boundary conditions. 
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Substituting for 70 m (12.221), we obtain 

" x 2 ' A M 1 _ 1 1 

which upon multiplication by x 2 becomes 

x2yx + 2xy\ = - 1 + 

or 

Integrating once yields 

which can be rewritten as 

Integrating again gives 

dx \X dx ) * x 

x2 — = -x + lnx + ax 

dx 

dyx _ 1 ^ lnx ( ax 

dx 

lnx 1 a, 
yx - - lnx + bi 

X X X 

Using the boundary condition yx(l) = 0, we have &i = ax + 1 so that 

In x /* 1 
y, = -In x + o t I I — 

x \ x 

(12.225) 

(12.226) 

As x ->eo, 7, -*• - lnx, and hence, it cannot satisfy the second boundary condi
tion j > i ( ° ° ) = 0 in (12.222). Consequently, the straightforward expansion, which 
we will call the outer expansion and denote by the superscript o, is 

yo = 1 _ I + e 

x 
. U + I tox + i l (12.227) 

is not valid for large x. 
T o investigate ihc hrliiivjor of the solution for lnrgo wo Introduce tlir 

contraction transformation 

(12.228) 

so that 
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dx"d$dx 6 d$ 

d2 , d2 

dx2 dt-2 

Then, (12.216) becomes 

2vd2y' 2e2vdyl
 I + „ .dy1 

e2v —4- + — + e 1 + V — = 0 
d? £ d$ * d% " 

whose distinguished limit is 

dV 2 d / , dv1' 

corresponding to v = 1. The resulting expansion we call the inner expansion and 
we have indicated it by the superscript i. 

Instead of assuming the form of the expansion for yl, finding and solving the 
equations for the different orders, and then matching with the outer expansion, 
one can use the outer expansion as a guide for detennining the form of the inner 
expansion. This is very convenient in the case of partial-differential and differ
ential-integral equations, especially nonlinear equations. Moreover, in this case, 
the first term given by (12.224) is valid everywhere, and hence, it is valid in the 
inner region. Thus, expressing it in terms of the inner variable, we have 

yo = 1 " J (12.230) 

Then, letting e -*• 0 with £ being kept fixed yieldsy0 ~ 1, which is the first term 
in the inner expansion. Moreover, the form of y0 in (12.230) suggests that / 
goes in powers of e. Hence, we seek an inner expansion in the form 

y = l + ey , (£ ) + --- (12231) 

Substituting (12.231) into (12.229) and equating the coefficient of e to zero, we 
obtain 

yy+d+i^y; =o 0 2 . 2 3 2 ) 

Using the integrating factor 

= exp(2 ln£ + £ ) =£V 

we rewrite (12.232) as 
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Hence 

or 

d ( , .dYx\ n 

d$ V d% 1 

dYx _ 

d% 

which upon integration gives 

f * e'T 

\ = c , -r-tfr + d, (12.233) 

where C i and d, are arbitrary constants. The inner expansion must satisfy the 
boundary condition at infinity, and this is the reason we set the lower limit 
equal to 0 0 because * = corresponds to £ = «>. It follows from (12.217) and 
(12.231) that Yx("o) = 0, and hence, it follows from (12.233) that dx = 0. Then, 
(12.233) can be rewritten as 

rte-r 
YX=CX ~jdT 

so that (12.231) becomes 

y = l - ec, — T df + • • • (12.234) 
J £ r 

where the limits of integration have been interchanged so that the resulting 
integral is positive. The constant cx needs to be determined by matching the 
inner and outer expansions. 

We match the two-term outer expansion (12.227) with the two-term inner 
expansion (12.234) and proceed as follows: 

Two-term outer expansion: y~ 1 - — + e^ - ^1 + — j l n x + t ^ ^ l - — j 

Rewritten in inner variable: = 1 - j + e |[- ^1 + In (^—^ +bx ^1 - ŷ j 

e 
Expanded for small e: = 1 — + e l n e - e l n £ + ebx + — • 
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Two-term inner expansion: =1 - e ^~ + In £ - In e - b^ (12.235) 

We note the presence of the logarithmic term in (12.235). 

Two-term inner expansion: y ~ 1 - eci J — dr 

Rewritten in outer variable: = 1 - eci J dr 
tx 

r-e-r 

1J ~7 
u tx ' 

Expanded for small e: = 1 - ec, + > + In exj + • 

x 
where -vis Euler constant. In expanding the integral, we used integration by parts 

Two-term outer expansion: = 1 - — - ecx(- 1 + y + I nx+ In e) (12.236) 

vhere yis. 
as follows: 

^tx ' ' |cx Jtx ' 

= - L l + e - r i n T l _ f\T\Te-TdT+[ \T\T€-T, 
- T J ex J o J o 

E - € X 

- + e~ex m & + + j n c j 
ex 

Expressing £ in (12.235) in terms of x and equating the result to (12.236), we 
have 

1 c, 
1 e l nx + efc, = 1 - — - e c , ( - l + y + \nx + In e) (12.237) 

x x 

Therefore, c, = 1 and 6, = 1 - y - In e so that 

y> = i - ^ + ej^-^1 lnx + ( l - y - l n e ) ^ l - ~ j (12.238) 

yl = 1 - e | i T c / r + •• (12.239) 
J T T 

Finally, we form a composite expansion by adding the outer expansion (12.238) 
and the inner expansion (12.239) and subtracting from the result their common 
part (12.236) with c, = 1. The result is 
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=l-re[-(14)lnjc+(1-̂ ,n£)(1-f)]+1 

— dr - 1 + — + e( - 1 + y + In x + In e) + • • • 
t • x 

or 

r°° e~T lnx 1 - y - In e 
= 1 - e / - r dr - e + Jt r2 I x x 

(12240) 

PROBLEM 2 

As a second problem, we consider after Cole (1968) 

ey" + yy - 7 = 0 0 < x < 1 

7 (0 ) = a 7 ( 0 = 0 

(12.241) 

(12.242) 

where 0 < e « 1 and a and 3 are independent of e. In this case, the small 
parameter multiplies the highest derivative, and hence, a boundary layer is 
expected. However, the location of the boundary layer depends on the sign of 
the coefficient 7 of 7'. But the value of 7 is a function of its values a and 3 at 
the boundaries. Hence, the location of the boundary layer depends on the values 
of a and 3, as verified below. 

We seek an outer expansion in the form 

7 ° = 7 o ( x ) + C 7 1 ( x ) + ---

Substituting for y° in (12.241) and (12.242) and equating the coefficients of 
e° to zero, we obtain 

yoy'o-y<>=o (12.243) 

^o(0) = a 7o ( l ) = /3 (12.244) 

Equation (12.243) provides two branches for the outer expansion, namely 

7 o = 0 (12.245) 

and 

7o = x + c 0 (12246) 

The first branch must be discarded because it cannot satisfy general boundary 
conditions. Then, the secorfd branch yields the two special outer solutions 

yr = x + 8 - 1 (12.247) 

(12248) 

where yr satisfies the right boundary condition and yl satisfies the left boundary 

yl = x + a 
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condition. It follows from (12.247) and (12.248) that 

/ ( O ) = 0 - l and / ( l ) = a + l 

Hence, If <* (3 - 1, yr Is not valid near x m 0 and y1 is not valid near x m 1. 
Hence, a boundary layer is needed. If the boundary layer is at the left end, y1 

is discarded; if the boundary layer is at the right e n d , y is discarded; and if the 
boundary layer (shock layer) is in the interior of the interval, b o t h y a n d y 
are needed. If a = 0 - 1, then y = / = x + 0 - 1 satisfies the differential equation 
and boundary conditions, and hence, it is the exact solution. 

When a=£/3- 1, a boundary layer develops somewhere in [0, 1 ] . To inves
tigate the behavior of y in the boundary layer, we introduce the stretching trans
formation 

where xb is the location of the boundary layer, which is not known a priori. 
For linear problems, it is unnecessary to scale the dependent variable because the 
scale does not affect the solution. However, for a nonlinear problem, the depen
dent variable may need to be scaled. Thus, we put 

where X is determined in the course of analysis. Substituting (12.249) and 
(12.250) into (12.241), we have 

x - xb 

or x=xb + €p% v>0 (12.249) 

(12.250) 

or 

If X = 0, the distinguished limit is 

corresponding to v = 1. If X 0, the distinguished limit is 

(12.251) 

corresponding to 

(12.252) 

X + y - l * 0 and 2 * > - l - 0 
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or 

v = \ and X = \ 

It follows from (12.250) that, in the first case (i.e., X = Q),y = t? ( l ) , whereas, in 
the second case (i.e., X = -5), y = 0 (e 1 / 2 ) . In the second case, the distinguished 
limit (12.252) is the same as the original differential equation. Thus, it needs to 
be integrated numerically and no simplification is achieved by carrying out the 
expansions. However, Cole (1968) pointed out that the boundary conditions are 
canonical so that the numerical integration can be done once for all problems. In 
this book, we consider only the first case in which y = i9 ( l ) , v = 1, and the dis
tinguished inner limit (12.251) is simpler than the original differential equation. 

To the first approximation, yl can be replaced by Y in (12.251), which upon 
integration gives 

Y' + \Y2=\b or Y' = \{b-Y7) (12.253) 

where b is a constant of integration. It must be positive; otherwise, as £-• « » , 
Y--* -<*», whereas as £ -> Y-* «>, making y' unmatchable with the outer ex
pansion^). Then, separating variables in (12.253), we have 

2dY 

where b is replaced with k2, since it is positive. In integrating (12.254), we con
sider two cases: Y2 < k2 and Y2 > k2. In the first case, we assume that 

Y = k tanh 0 so that dY = k sech2 6 dd 

and obtain from (12.254) that 

2k sech2 6 dd _ 2 

k2-k2 tanh2 T d ^ 1 d Q 

Hence, 

Q = i k(£ + d) 

and 

y i = y + • • • = k tanh [| jfc($ + d)] + • • • (12.255) 

where d is a constant of integration. In the second case, we assume that 

y = fccoth0 so that dY - -fccosech2 6dd 

and obtain from (12.254) that 

2k cosech2 6 d6 _ _ 2 

~k2-k2 c o th 2 0 - d ^ ~ 1 d e 
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Hence, 

and 

y = y + • • • = k coth [| + d)] + • • • (12.256) 

We note that k may be taken to be positive because tanh and coth are odd. The 
constants of integration k and d in either form of the inner expansion need to 
be determined from matching the inner and outer expansions. We consider the 
three possible locations of the boundary layer: at the left end, at the right end, 
and at an interior point. 

When the boundary layer is at the left end, xb = 0, the outer solution (12.248) 
must be discarded, and the proper outer solution is (12.247). Next, this outer 
solution is matched with one of the forms of the inner expansion and conditions 
are obtained for the boundary layer to be at the left end. Expressingy in terms 
of £ and expanding the result for small e, we have 

( y / = 0 - l (12.257) 

Expressing y1 in terms of x, expanding for small e, and noting that x is positive, 
we obtain from either (12.255) or (12.256) that 

(yi)° = k>0 

Hence, k = 0 - 1 and 

f ( 0 - l ) t a n h H < p - l ) (€ + <*)] 

\ ( 0 - l ) c o t h 1) « + </)] 

Since the boundary layer is assumed to be at x = 0 corresponding to £ = 0, it 
must satisfy ^(O) = a or 7 (0 ) = a. Hence, it follows from (12.259) that either 

a = 03- 1)tanh [J (0 - lyJ] (12.260) 

or 

a = ( 0 - l )coth [\ ( 0 - l)d) (12.261) 

It follows from (12.258) and the behavior of tanh and coth in Figure 12-14 
that 0 must be greater than 1 so that the inner solution either descends or ascends 
to 0 - 1 > 0 . Moreover, if a > 0 - 1, the inner solution is given by a coth that 
descends from a to 0 - 1. If a is less than 0 - 1, it must also be greater than 
- (0 - 1) so that the inner solution will be given by a tanh that ascends from a 
to 0 - 1. These solutions are shown in Figure 12-15. 

Next, we investigate the case in which the boundary layer is at the right end. 
In this case, xb = 1, the outer solution (12.247) must be discarded, and the 
proper outer solution is (12.248). To match this outer solution with one of the 

(12.258) 

i f Y < e - ' 0 2 . 2 5 9 ) 
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Figure 12-14. Behavior of tanhf and cothf. 

forms of the inner expansion, we express yl in terms of \ = (x - l)/e, expand 
the result for small e, and obtain 

0 0 ) ' ' = a + l (12.262) 

Moreover, we express yl in (12.255) and (12.256) in terms of x and obtain 

Figure 12-15. Behavior of the composite solution when the boundary layer is atx • 0 for 
« = 0.1, 0 = 3 and: (a) a = -0.5; (ft) o * 4. 
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Y-k coth M4M 

= ' - ( o + l ) 
. - ( a + 1 ) 

le t t ing e-*0 and noting that x < 1, we find that the'argument tends to - « * , 
and hence, 

0 ' ) ° = - * (12263) 

Equating (12262) and (12263) according to the matching principle, we have 
fc--(a + 1). Hence, 

tanh H ( a + 1 ) « + </)] r > a + l 
coth [--|(a+1) (£ + </)] K < a + 1 ' 

which must satisfy the boundary condition .y( l ) = B or Y"(0) = B because x = 1 
corresponds to £ = 0. Then, either 

|3 = - ( a + l ) t a n h 1)^] (12265) 

or 

0 = - ( a + l ) co th [-|(a + l)d] (12266) 

Since A: is assumed to be positive, a + 1 must be negative. When B < a + 1 < 0, 
the inner solution is given by a coth so that it rises from B to a + 1. When Ij3l < 
la + 11 and a + 1 < 0, the inner solution is given by a tanh, which descends from 
B to a + 1. These solutions are shown in Figure 12-16. 

Finally, we investigate the case in which the boundary layer is at an interior 
point. In this case, both outer solutions are needed and they must be matched 
with the inner solution. To match yr of (12.247) w i thy , we express it in terms of 
£ - (x - xb)/e, expand the result for small e, and obtain 

(yrY = xb + B- 1 (12.267) 

Figure 12-16. Behavior of the composite solution when the boundary layer is at x = 1 for 
t * 0 . 1 . o = -3 and: (A\R = \(H\ti9 - A 
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To match yl of (12.248) with yl, we express it in terms of £, expand the result 
for small e, and obtain 

(ylY=xb + a (12.268) 

Since £ = (x - xb)/e tends to -°° to the left of xb and to +°° to the right of xb, 
the inner solution must rise from xb + a to xb + B - 1. Figure 12-14 shows that 
only tanh rises from -k at £ = - ° ° to +k at £ = °°. Thus, the inner solution must 
be given by (12.255). Letting £ -+ °°, we find that 

0 ' ) r = * (12269) 

whereas letting £-+-*>, we find that 

O'V = -it (12.270) 

where the superscript r and / refer to the outer limits to the right and left of xby 

respectively. Equating (12.267) and (12.269), we have 

xb + B-i=k (12.271) 

whereas equating (12.268) and (12.270), we have 

xb + a = -k 

It follows from (12.271) and (12.272) that 

xb = ±(l-a-B) * « i ( 0 - l - o t ) 

and the inner solution is 

/' = \(B - 1 - a) tanh [\(B - 1 - a)£] + • • • (12.274) 

Thus, the inner solution rises from ~\(B- 1 - a ) to \ (B- 1 - a ) , as shown in 
Figure 12-17, where d = 0 because the shock is assumed to be centered at x =xb 

or £ = 0. Since 0<xb < 1 and & is assumed to be positive, it follows from 
(12.273) that the presence of a shock layer (i.e., an interior boundary layer) 
demands that 

0<4(1 - a - J3)< 1 and 0 - l - a > O 

y 

Figure 12-17. Behavior of the composite expansion when the boundary layer is at an 
interior point for a--2,0= L8 , and e - 0.1. 

(12.272) 

(12.273) 
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•A V-. 
_ 

Y - - ( a + l)t<mh \ 

tanh 

= 0 

Y » ( £ - | ) c o t h 

I I V P 

xh»i 

/ Y ° - ( a + l)coth j 

V 

Figure 12-18. A diagram that summarizes the location of the boundary layer in the 0<*-plane. 

or 

- 1 < < * + 0 < 1 and B>l+a (12.275) 

Figure 12-18 summarizes the locations of the boundary layer in the j3a-plane. 
The unshaded area corresponds to the case in which y = 0 ( e 1 / 2 ) and the dis
tinguished limit is given by (12.252). Hence, the solution needs to be determined 
numerically. This example shows that in a nonlinear boundary-layer problem, 
the location of the boundary layer is strongly dependent on the end values. 

Exercises 

1 2 . 1 . Consider the problem 

ey" + y + y = 0 

y(0) = oc y(\) = B 

(a) Determine the exact solution. 
(b) Use the method of matched asymptotic expansions to determine a first-

order uniform expansion. Compare your answer with the exact solution. 
(c) Use the method of multiple scales to determine a first-order uniform 

expansion. Compare your answer with those in (a) and (b). 

1 2 . 2 . Consider the problem 

ey - y + y - 0 

y(0) = a y(l) = B 

(a) Determine the exact solution. 
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(b) Use the method of matched asymptotic expansions to determine a first-
order uniform expansion. Compare your answer with the exact solution. 

(c) Use the method of multiple scales to determine a first-order uniform 
expansion. Compare your answer with those in (a) and (b). 

1 2 . 3 . Consider the problem 

ey - y = 1 

y(0) = a y(l) = B 

(a) Determine the exact solution. 
(b) Use the method of matched asymptotic expansions to determine a first-

order uniform expansion. Compare your answer with the exact solution. 
(c) Use the method of multiple scales to determine a first-order uniform 

expansion. Compare your answer with those in (a) and (b). 

1 2 .4 . Consider the problem 

ey + y = 1 

><<0) = a y(\) = 6 -

(a) Determine the exact solution. 
(b) Use the method of matched asymptotic expansions to determine a first-

order uniform expansion. Compare your answer with the exact solution. 
(c) Use the method of multiple scales to determine a first-order uniform 

expansion. Compare your answer with those in (a) and (b). 

1 2 . 5 . Determine first-order (one-term) uniform expansions for 

ey" ± (3x + \ )y = 1 

y(0) = a y(l) = B 

1 2 .6 . Determine first-order uniform expansions for 

ey ± y - Ix 

^(0) = oc y(\) = B 

In each case, compare your answer with the exact solution. 
12.7. Determine first-order uniform expansions for 

e / ' ± ( 2 x 2 + x+ l ) / = 4x+ 1 

7 ( 0 ) « a 7 ( 0 = 0 
12.8. Determine first-order uniform expansions for 

(a) ey" + xy + xy ~ 0 
y(0) = q y(l) = 0 

(b) ey" - (1 - x)y - (1 - x)y = 0 
y(0) = a y(\) = B 

1 2 . 9 . Determine a first-order uniform expansions for 
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ey" + x2y - x3y = 0 

y(0) = a y(l) = B 

12.10. Consider the problem 

ey" +xny' - xmy = 0 

y(0) = a y(l) = B 

Under what conditions will there be a boundary layer at the origfif? Then, 
determine a first-order uniform expansion when a boundary layer exists there. 

12.11. Determine a first-order uniform expansion for 

ey + xy - xy = 0 

y(-l) = a y(\) = B 
12.12. Consider the problem 

in i , ey - y = \ 

y(0) = a / ( O ) = 0 y(l) = y 

(a) Determine the exact solution and use it to show that there is in general a 
boundary layer at each end. 

(b) Determine a two-term uniform expansion and compare your answer with 
the exact solution. 

12.13. Consider the problem 

ey - y + y = 0 

v ( 0 ) ~ a / ( O ) = 0 y(\) = y 

(a) Determine the exact solution and use it to show that there is in general a 
boundary layer at each end. 

(b) Determine a two-term uniform expansion and compare your answer with 
the exact solution. 

12.14. Consider the problem 

ey"' - (2x+ 1 ) / = 1 

y(0) = a / ( O ) = 0 y(\) = y 

Determine a two-term uniform expansion. 

12.15. Consider the problem 

ey">-y" = l 

y(0) = a y'(0) = B y(l) = y / ( 1 ) = 5 

(a) Determine the exact solution and use it to show that there is in general 
a boundary layer at each end. 
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( b ) Determine a two-term uniform expansion and compare your answer with 
the exact solution. 

12.16. Consider the problem 

eyiv (2x + 1 ) / ' = 1 

y(0)«a / ( O ) = 0 .v(D = 7 / ( 1 ) « S 

Determine a two-term uniform expansion. 

12.17. Consider the problem 

e V ' + x V - ( x 2 + e 1 / 2 ) y = 0 

7 ( 0 ) = a 7 ( 1 ) = 0 

Show that there are two distinguished limits. Then, develop a first-order triple-
deck uniform solution. 

12.18. Consider the problem 

3 
u" + — u + euu = 0 

r 

« ( i ) = o u(°°)=i 

Determine a two-term uniform expansion. 

12.19. Consider the problem 

u + — u+ euu = 0 
r 

u ( l ) = 0 u(<*>)=\ 

Determine a one-term uniform expansion. Note that the nonuniformity appears 
in the first term. Answer: u° = {In ( l / e ) l - 1 In r + • • • , 

+ • • • , u c = u' 
e / j € r T 

12.20. Consider the problem 

j j c 2 = + - r ( 0 ) = 0 
JC 1 - x 

Show that 

V I r c = f x 3 ' 2 + e[\ - In 2 + 4 In € + | * 3 / 2 + x l > 2 - In (1 + x , / 2 ) 

+ £" V£(£+ D + s i n h - ' > / ? ! + • • • 

where £ = (1 - x)/e. 

12.21. Consider the problem 
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ey -yy -y = 0 

y(0) = <* v ( l ) = (3 

Determine a first-order uniform solution for the case y ~ 0( 1). 

12.22. Consider the problem 

ey + yy - xy = 0 

7(0) = a y(l) = 3 

Determine a first-order uniform expansion for the case y = 0(1). 

12.23. Consider the problem 

ey" -y7 = 0 

y(0) = a y(l) = 3 

Determine a first-order uniform expansion. 

12.24. Consider the problem 

e / ' ± ( 2 x + \)y +y7 = 0 

y(0) = a y(l) = B 

Determine a first-order uniform expansion. 



CHAPTER 13 

Linear Equations with Variable 
Coefficients 

In this chapter, we consider linear differential equations with variable coefficients 
having the form 

y ' (x ) = F ( * ) y ( x ) + h(x) (13.1) 

where y and h are column vectors with n components and F(x) is an n X n 
variable-coefficient matrix. We concentrate on determining the solutions of the 
homogeneous problem 

y ' ( x ) = F ( x ) y ( x ) (13.2) 

because, once these are known, we can use the method of variation of parameters 
to determine a particular solution and then the general solution. If y i ( x ) , y 2 ( x ) , 
• • • , y „ ( x ) are n linearly independent vector solutions of (13.2), we use them to 
express the solution of the inhomogeneous problem (13.1) as 

y (x ) = c, (x ) y t ( x ) + c 2 ( x ) y 2 ( x ) + • • • + cn(x) yn(x) (13.3) 

where the cn(x) are scalar functions of x to be determined. Differentiating (13.3) 
with respect to x yields 

/(*) = c\ y, + c'2y2 + • • • + c'nyn + c, y', + c 2y ' 2 + • • • + cnyn (13.4) 

Substituting (13.4) into (13.1) gives 

c'xYx + c2y2 + • • • + c^y„ +c{y\ + c 2 y 2 + • • • + c n y^ 

= c , F y t + c 2 F y 2 + • • • + c M Fy n + h (13.5) 

Since y'n = Fyn, (13.5) simplifies to 

c\y\ + c 2 y 2 + • • • +c'nyn = h (13.6) 

which is a system of n linear equations for the n scalars cm. If the components 
of ym are yms, then (13.6) can be rewritten as 

325 
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Yc=h (13.7) 

where 

yn • • ym~ » f -
C | 

y%% y%n 
r 

y = • « • 
C = • 

ynt - •' ynn_ 

Since y , , y 2 , • • • , y „ are linearly independent, the matrix y is nonsingular and 
has an inverse, which we denote by Y~l. Multiplying (13.7) from the left by 
y _ l , we have 

c' = y _ 1 h (13.8) 

which yields a system of n uncoupled equations for the cm. Since y and h are 
known functions, the solution of (13.8) can be obtained in quadratures as 

c = JY-l(x)h(x)dx (13.9) 

Therefore, once the solutions of the homogeneous equation in (13.1) are 
known, a particular solution of (13.1) can be determined from (13.9). Con
sequently, we consider only the homogeneous solutions of (132) . We begin with 
first-order scalar equations, then we take up second-order equations. 

13.1. First-Order Scalar Equations 

We begin with the case in which y (x) and F(x) are scalar functions because the 
exact solution of (13.2) can be expressed as 

y = cefF(x)dx (13.10) 

where c is a constant of integration that can be determined from the initial 
condition. 

If F(x) has a Taylor series representation convergent for br - x0\<R, we say 
that x0 is an ordinary point of the differential equation;otherwise, we say that 
x0 is a singular point of the differentia] equation. Moreover, if x is considered as 
a complex variable, then F(x) is an analytic function, regularin the neighborhood 
IJC - x0\<R ofx0. 

The point x0 if finite can always be transferred to the origin by letting 

£ = X - J C 0 (13.11) 

so that (13.2) becomes 

(13.12) 
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where F(£ + x 0 ) has a Taylor series representation convergent for l£ \<R. There
fore, without loss of generality, we consider the case in which the point under 
consideration is the origin. 

If 

n ~ 0 
(13.13) 

where the Fn are constants, is a convergent series in \x\<R, then (13.10) 
becomes 

or 

y - c exp 

y-c exp 

fill Fnxn) dx] = c e x p [ Z Fnfxn 

mJ\n = o J J [ n = o J 
dx 

(- - F „ x " + ' 

We note that the series in the exponent is convergent because 

lim 
n -*•<*> 

nth term 

(n - l )th term n 
= lim 

Fnxn* ln 
- x lim - x lim 

Fn-x 

(13.14) 

= - 03 .15) 

on account of (13.13) being a convergent series of radius R. Since exp (z) 
can be represented by a Taylor series convergent for all z, (13.14) can be rep
resented by a Taylor series that converges in IxK/? . 

If F(x) has an isolated singularity that is a pole of order N atx = 0, then it 
can be represented by the Laurent series 

1 

* n - 0 
(13.16) 

where the Fn are constants and F0 0. Substituting (13.16) into (13.10) yields 

^ dx. 

or 

y = c exp 

y-c exp h 

c exp £ Fn[x»'Ndx 

+ F/yX + -j Fjy + , x 2 + I F ^ f + 2 * 3 + • • " 

When W = 1,(13.17) becomes 

y = c exp [ F 0 In x + f \ v v l F 2 x 2 + | F 3 x 3 + • • •] 

+ F # _ t Inx 

(13.17) 
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which can be rewritten as 

y = cxFo exp [Ftx + \F2x2 + 3 F 3 x 3 + • • •] (13.18) 

The exponential term can be represented in a power series in x, so that (13.18) 
can be expressed as 

y = cxF> £ anxn (13.19) 
n = 0 

where the a„ are independent of x. When # = 2,(13.17) can be rewritten as 

y = c exp £ ~ + Fx In x + F2x + %F3x2 + \F4x* + • • • j 

which can be rewritten as 

y = cxFi exp exp [F2x + | F 3 x 2 + ±F4x3 + • • •] (13.20) 

The term exp (~F0/x) cannot be expressed as a power series i n * or x " 1 because 
it tends to zero faster than any power of x as x -+ 0 if F0 > 0 and it tends to 
infinity faster than any power of x~l as x -*• 0 if F0 < 0. The last exponential 
in (13.20) can be expressed as a power series in x, so that (1320) can be re
written as 

y = cxF>e-Fox" f ; anxn (13.21) 
n = 0 

where the an are independent of x. Similarly, for N>2, (13.17) can be ex
pressed as 

y = CXFN~ » exp 

I (N-l)xN~l (N-2)x 
N-2 

7N-1 
X 

• £ a**" (13.22) 
n = 0 

where the a„ are independent of x. 
Equations (13.19), (13.21), and (13.22) show that one can distinguish the 

pole of order one from those with order greater than one. When the pole is of 
order one, the form of the solution (13.19) differs from that in the case of an 
ordinary point by the factor xF°. When the pole is of order greater than one, the 
form of the solution differs from that in the case of an ordinary point by an 
exponential factor that cannot be expanded in powers of x in addition to the 
factor x ° , where a is a constant. When N~ 1, the origin is called a regular 
singular point, while when N> 2, the origin is called an irregular singular point. 



SECOND-ORDER EQUATIONS 329 

It turns out that the above forms of the solution do not change when y is 
a column vector and F is an n X n matrix. Next, we consider second-order 
equations. 

13.2. Second-Order Equations 

We consider the solutions of 

in the neighborhood of the origin. If p(x) and q(x) are analytic functions, regular 
in the neighborhood of the origin, the origin is called an ordinary point of the 
differential equation. In this case, p (x ) and q(x) can be expanded in convergent 
power series in x with nonvanishing radii of convergence and y possesses conver
gent power-series solutions in x. When either p(x) or q(x) or both are singular at 
the origin, the origin is called a singularity of the differential equation. If p(x) 
has at most a pole of order one and q(x) has at mo'st a pole of order 2 at the 
origin, the origin is called a regular singular point. In this case, at least one of the 
solutions of (13.23) has the form (13.19). If p(x) has a pole of order higher than 
one or q(x) has a pole of order higher than 2 or both at the origin, the origin is 
called an irregular singular point and at least one of the solutions of (13.23) has 
the form (13.22). Next, we show how to determine the solutions of (13.23). To 
minimize the algebra, we consider special cases that show the characteristics of 
the solutions. In this section, we consider the case when the origin is an ordinary 
point of the differential equation. 

Let us consider 

Here, p(x) = x and q(x) = 2, so that the origin is an ordinary point of (13.24) 
and y can be expanded in a Taylor series as 

y"+p(x)y' + q(x)y = 0 (13.23) 

y" +xy' + 2^ = 0 (1324) 

y(*)= E anx' 
n (13.25) 

Differentiating (13.25) with respect to x yields 

- 1 (13.26) 

Differentiating (13.26) with respect to x yields 

.n-2 (13.27) 
n = 2 
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where the terms proportional to a0 and ax have disappeared. Substituting 
(13.25) through (13.27) into (13.24), we have 

£ n(n - I K * " " 3 + £ nanxn + 2 £ 'anxn - 0 (13.28) 

The next step involves equating coefficients of like powers of x. To accomplish 
it, we change the dummy summation index n so that the powers of x under the 
summation are the same. Thus, we let m = n - 2 in the first summation and m -
n in the second and third summations. The result is 

Z (m + 2)(m+\)am.2xm + £ mamxm+2 £ amxm = 0 
m = 0 m = 0 m = 0 

or 

£ [(m+l)(m + 2)am.2 + (m + 2)am]xm=0 (13.29) 
m = 0 

Equating each of the coefficients of xm to zero, we obtain the recurrence relation 

lm*2 m + 1 

It follows from (13.30) that 

for m = 0, 1 , 2 , - ( 1 3 3 0 ) 

ax a2 _a0 . 
a2 - ~a0 a3 = a 4

 = ™ - — 

Thus, the odd and even coefficients are uncoupled; the even coefficients can be 
expressed in terms of a0, whereas the odd coefficients can be expressed in terms 
of ai. The result is two linearly independent solutions, one multiplied by a0 and 
the other multiplied by at. Therefore, 

y(x) = a0yt(pc) + a,y2(x) (13.31) 

where 

/ x , 2 x 4 x 6 x 8 

y,(x) - 1 - x 2 + + + • • • 
, , w 3 3 -5 3 - 5 - 7 

^ , ( - 2 ) m m ! x 2 m 

* £ ' (13.32) 
m = 0 ( 2 m ) ! 
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- m I ^ r = ^ * ' 0333) 
m — o 

It is clear that the series in (13.33) converges because we are able to find its 
sum in closed form. Using the ratio test on (13.32), we have 

/nth term , (~2)mm\x2m(2m - 2 ) ! 
lim — = lim 

(m- l )thterm - ( 2 m ) ! ( - 2 ) m " x ( m - l ) ! * 2 " 1 " 2 

jj -2mx 2 

m —«» (2m) (2m - 1) 

= - J C 2 Urn -—-—- = 0 
m - . o o im - 1 

and the series in (1332) converges for all values of JC. Therefore, the general 
solution of (13.24) is given by (13.31) for all values of x. 

13.3. Solutions Near Regular Singular Points 

In this case, p(x) or q(x) or both are singular at x = 0 but xp(x) and x2q(x) 
can be represented by Taylor series in powers of x. The simplest possible equa
tion of this kind occurs when 

p(x)=p0x~1 and q(x) = q0x~2 

where p0 and q0 are constants, so that (13.23) becomes 

y +—y + — v = 0 (13.34) 
X X 

It is called Euler's equation and its exact solution can be found easily, as shown 
next. 

THE EULER EQUATION 
Equation (13.34) can be rewritten as 

x2y" + p0 xy + q0y = 0 (13.35) 

which belongs to the class of differential equations where in each term the power 
of x is the same as the order of the derivative of y. Such equations have solutions 
of the form 

y=xa (13.36) 

where a is a constant called the index to be determined from the equation. 
Substituting (13.36) into (13.35) gives 
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0(0- l)xa +p0axa + q0x° = 0 

or 

o 2 + ( p 0 - \)o + q0=0 (13.37) 

which is usually called the indicial equation. The roots of the quadratic equation 
(1337) can be easily found to be 

ox, o2 = i ( l - Po) ± - Po ) 2 " <?o] 1 / 2 (1338) 

If ai and a2 are different, then x°l and xa* are two linearly independent 
solutions and the general solution of (13.35) can be expressed as 

y = cxx0i + c2xa> (13.39) 

where Cx and c2 are arbitrary constants. If Ox = o2 = |0 " Po)> then (1 " Po ) 2 = 

4q0, and the above procedure yields only one of the two possible linearly 
independent solutions, namely 

yx(x) = xa> 

The second linearly independent solution can be determined by letting 

y2(x) = u(x)yx(x) 

where the function « ( x ) needs to be determined. Substituting y2 into (13.35) 
gives 

x2yxu" + 2x2y\u + x2y"u + p0xu'yx + PoXuy\ + q0uyx - 0 

which simplifies to 

x2yxu" + (2x 2 / , + p0xyx)u' = 0 (13.40) 

because yt is a solution of (1335). Equation (13.40) is a first-order equation in 
u'. Thus, this method is general and can be used to determine a second linearly 
independent solution of a second-order equation once one of the solutions 
is known. Substituting for^i in (13.40) gives 

x a ' + V + (2a, + p 0 ) * a , + V = 0 

or 

xu" + u = 0 

Hence, 

u 1 
— + - = 0 
U X 

or 
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In u + In x = 0 

Thus, 

u = — then u - In x 
x 

Therefore, 

y2(x) = x°> I n * (13.41) 

The solution (13.41) can be obtained by using the following alternate method. 
Putting^ = x° in (1335) leads to 

x2y"+p0xy + q0y = [o2 + (p0 ~ l)a+ q0]x° = (o - ol)2x° (13.42) 

when O j = o2. Differentiating (13.42) with respect to a gives 

5? (I)+
 "°x £{*)

 + " t = 2(0 - *?" 
(13.43) 

Setting o = ai in (13.42) and (13.43) shows that y and 9y/da satisfy the dif
ferential equation when a - o v Thus, the occurrence of the factor (a- ox)2 

makes y and 9y/9a satisfy the differential equation when o = ox. Therefore, one 
of the solutions is y x = x a » , whereas the second solution is 

dy 

da da a = a, OO 

= eainx]nx\ = x c r » l n x 
o = o, 

in agreement with (13.41). 
The above example shows that the case of equal indices needs special treat

ment. As shown below, even the case of different indices may need special 
treatment if a2 - ox is an integer. Next, we consider equations more general 
than the Euler equation beginning with the case of unequal indices differing by 
a noninteger. 

THE CASE o 2 - o x * INTEGER 
We consider the equation 

4x/ ' + 2/+.y = 0 (13.44) 

Here, p ( x ) = Ax" 1 and q(x)= ~ x _ 1 so that x = 0 is a regular singular point. 
Hence, (13.44) possesses solutions of the so-called Frobenius (after Frobenius) 
form 
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n = 0 n - 0 

Substituting7 Into (13.44) gives 

4 £ (a + n)(a + , i - l ) a n x ^ " - 1 + 2 £ (o + , i )a n ^ + " 
n = 0 n = 0 

- 1 

+ E a „ x a + w = 0 (13.46) 
,1 = 0 

The leading term in each of the first two summations in (13.46) is proportional 
to xa~1, whereas the leading term in the last summation is proportional to x°. 
Hence, the dominant term that yields the indices can be obtained by setting the 
coefficient of xa'x to zero, that is, 

4o(a - l ) f l 0 + 2oa0 = 0 (13.47^ 

Then, (13.46) becomes 

£ 2(0 + n ) (2a + 2 « - \ ) a n x a + n - 1 + f ) anxa+n=0 
n = l n = 0 

The power of x can be made the same in the two summations by putting n - 1 = 
m in the first summation and n = m in the second summation. The result is 

oo 

X [2(a + m> l ) ( 2 a + 2m + l)am+l + am]xa*m = 0 
m = 0 

which, upon equating each of the coefficients of xa* m to zero, yields the recur
rence relation 

flm+1 = ~2(o + m + l ) ( 2 o + 2 m + l ) ( 1 3 ' 4 8 ) 

It follows from (13.47) that either a0 = 0 (trivial solution) or 

4a 2 - 4a + 2a = 0 

Thus, 

4a 2 - 2a = 0 then a = 0 or j 

In this case, the indices are unequal and differ by \ , which is not an integer. 
Hence, we expect to obtain two linearly independent solutions, one correspond
ing to each index. 

Putting a58 0 in (13.48), we have 
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m + 1 2 ( w + l ) ( 2 w + l ) 

Hence, 

- °± - °l ~ a° 
"l~~2 a2~~2-2-3 4! 

a2 do 
a* - 2 - 3 - 5 6! 

Therefore, when a0 = 1 

= Z ~ T - (13.49) 

This series converges for all x because 

l i m /«th term ^ ( - j c ) w ( 2 w - 2)? _ Q 

m — (m - l )th term ™ (2m)! ( - x ) m " 1 

Putting a = 5 in (13.48), we have 

m 1 2 ( m + l ) ( 2 m + 3) 

Hence, 

° l ~ ~ 2 - 3 * 2 ~ ~ 2 - 2 - 5 ~ 5 ! 

A 2 <*o 
<*3 = 

2 - 3 - 7 7! 

Therefore, when a0 = 1 

v , ( x ) = x , / 2 h - — + — - — + : 

h l J \ 3! 5! 7! 9! 

= * m L T ^ r n r ( 1 3 - 5 0 ) 

m~r0 ( 2 ^ + 1 ) ' 

which can be shown to converge for all values of x. Thus, in this case as in the 
case of the Euler equation, two linearly independent solutions are obtained, one 
corresponding to each index. 
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X (a + /t)(a + « - 1 K J C 0 + " - 2 + £ [1 + 3(a + n)-(a + n)2]anx°* n = 0 
n = 0 n = 0 

(13.52) 

The dominant terms in (13.52) are the coefficients of x°~2 and x 0 ' 1 , cor
responding to n = 0 and 1 in the first summation. Setting these coefficients equal 
to zero yields 

o(a- l ) f l o = 0 (13.53) 

( a + l ) ( r a , = 0 (13.54) 

Then, (13.52) becomes 

£ (a + n)(a + n- l)anx°^n-2+ f ) [1 + 3(a + *) - (a + n)2)anxa+n = 0 
n = 2 n = 0 

As before, we make the powers of x the same in these summations. To this end, 
we put n - 2 = m in the first summation and n - m in the second summation and 
obtain 

X {(a + m + 2 ) ( o + m + l)am+7 + [I + 3(o + m) ~ (o + m)2]am}x°+m =0 
m * o 

Then, equating the coefficient of each power of x to zero, we obtain 

1 + 3(a + m) - (o + m ) 2 

^ + 2 = * ( a + m + 2 ) ( o + m + l ) ^ ( 1 3 ' 5 5 ) 

THE CASE a2 - a, = INTEGER 
We consider two equations. The solutions of one of them can be obtained using 

the above procedure, whereas the solutions of the second are obtained by using 
a modification of the above procedure. We begin with the equation 

(1 -x2)y" + 2xy + y = 0 (13.51) 

Proceeding as before, we assume that^(x) has the form in (13.45) and find from 
(13.51) that 

( l - x 2 ) £ (a + » ) ( o + » - I K * 0 * " - 2 

n = o 

+ 2 £ (Q + n)anx°+n + £ flnxa+" = 0 
n = 0 n = 0 

or 



SOLUTIONS NEAR REGULAR SINGULAR POINTS 337 

It follows from (13.53) that either a = 0 or 1 if aQ 0. When a = 0, (13.54) 
is automatically satisfied and ax is arbitrary. When o = 1, (13.54) demands that 
ax = 0 . 

When a = 0, (13.55) reduces to 

_ 1 + 3m - m2 

am + 2 ~ (m+ l ) ( m + 2) 

Then, 

a2 = 
'2 

a2 _gp 
* 4 ~ " 4 " 8 « 6 10 

El 
80 

a, 
«3 

£3 

20 
f i . 
40 

_ 3a5 _ 3fli 

* 7 ~ l T ~ 5 o 0 
Hence, 

;K* ) = *o 
x2 x4 x6 I r x3 x5 3JC7 1 
— + — + — +•• + a \x + — + + • • • (13.56) 
2 8 80 J 1 [ 2 40 560 J V ' 

which contains two arbitrary constants, so that it must be the complete general 
solution with the series in brackets constituting two linearly independent solu
tions of (13.51). One can easily show, using the ratio test, that both series in 
(13.56) converge for Ixl < 1. 

When a = 1, it follows from (13.54) that a, = 0 and from (13.55) that 

1 + 3 ( m + 1 ) - ( m + 1 ) 2 

Then, 

a 3 -as - a 7 = • 

a0 

a2 = 
2 2 

a4 = -

(m + 2) (m + 3) 

• -t*2n+ i = 0 

a2 _ a0 

20 40 
a6 

3aA 

" I T 
3a0 

560 

Hence, 

y = a0x 
x2 x4 3x6 

1 + — + + 
2 40 560 

(13.57) 

which is a constant multiple of the second solution in (13.56). As mentioned 
before, (13.56) is the general solution of (13.51). 

Next, we consider a case that needs a modification of the above procedure. 
Thus, we consider Bessel's equation of order unity 

x2y" +xy + ( x 2 - l ) ^ = 0 

As before, substituting (13.45) into (13.58) gives 

(13.58) 
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£ ( 0 + n) (a + n - IK*"* » + £ (a + n)anx<" n 

n - 0 n = 0 

,1 = 0 

which can be rewritten as 

Z [(a + n ) 2 - 1 ] ^ " + Z < W f w + " + a - 0 
n = 0 , 1 = 0 

or 

(a2 - \)a0x° + 0 ( 0 + 2)a1xa + 1 + £ K° + ' WW*" 
,1 = 2 

+ £ a„x°+n*2 = 0 (13.59) 
,1 = 0 

Setting the coefficients of the dominant terms x° andx ° + 1 in (13.59) equal to 
zero, we have 

(o2 - l K = (a-l)(o + I K = 0 (13.60a) 

[(a + l ) 2 - l]a, = 0 ( 0 + 2)a, = 0 (13.60b) 

Then, (13.59) becomes 

£ [(a + n ) 2 - l ] « ^ + " + £ a „ * ' — a « 0 (13.61) 

,1 = 2 , 1 = 0 

The powers of x in these summations can be made identical by letting n- 2 = m 
in the first summation and n = m in the second summation. The result is 

£ { [ ( o + m + 2 ) 2 - l)am + 7+am}x°+m+2=0 
m = 0 

Equating the coefficient of each of the powers of x to zero leads to 

_ **in / j o f^y\ 
m + 2 " " ( a + m + 2 ) 2 - 1 ~(a + m + l ) ( o + m + 3) 1 * } 

It follows from (13.60a) that either a= 1 or -1 if a 0 =£0. Then, it follows 
from (13.60b) that at = 0 , and hence, a$ =as = 0 7 = • • • =fl2,i+i = 0 . Putting 
0 - -1 in (13.62) yields 
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Letting m = 0 in (13.63), we find that a2 is infinite. Thus, the above procedure 
does not yield a solution when a = -1 without modification. 

When o = 1, it follows from (13.62) that 

(m + 2) (m + 4) 

Hence, 

a2 

Thus, 

go 
2 - 4 

a4 

yx(x) = a0x 

a2 

4 - 6 2 - 4 2 - 6 

x 2 x 4 

1 - - + 

<*6 = 
<*0 a* 

6-8 2 • 4 2 • 6 2 • 8 

2 - 4 2 - 4 2 - 6 2 - 4 2 - 6 2 - 8 
(13.64) 

which is one of the solutions of (13.58), and it is usually denoted by 7 i (x ) when 
„ - • 
<*0 ~ 2 To determine a second linearly independent solution for (13.58), we may 
follow one of the procedures used to determine the second solution of the Euler 
equation in the case of equal indices. Here, we use the second procedure and 
solve for the am in terms of a0 without substituting for a. From (13.62), 

a2 = 
<*o 

<*6 

Hence, 

( o + l ) ( o + 3 ) 

* 4 

a 4 = 
a2 ao 

(o + 3) (o + 5) ( o + l ) ( o + 3 ) 2 (o + 5) 

ao 
(a + 5) (a + 7) (a + 1) (a + 3 ) 2 (a + 5 ) 2 (a + 7) 

= x° U 0 - ~ 

L (o+i 

flnX 

) (a + 3) (a+ l ) ( o + 3 ) 2 (a + 5) 

a0x6 

( o + l ) ( a + 3 ) 2 (o + 5 ) 2 ( a + 7) 
(13.65) 

As before, if we set a = -1 in (13.65), the coefficients become infinite, owing 
to the factor a + 1 in the denominators. To circumvent this difficulty, we 
replace a0 with b(o + 1) and obtain from (13.65) that 

y = bxl ( a + 1 ) 
o + 3 (o + 3 ) 2 ( o + 5) (o + 3 ) 2 (a + 5 ) 2 ( o + 7 ) 

(13.66) 

which, when substituted into the differential equation (13.58), yields 
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x*y"+x/ + (x2 - l)y = b(o + l ) 2 (o - l)x° (13.67) 

Alternatively, one can arrive at (13.67) from (13.59) by putting a0 • (o + l)fr, 
noting that ax = 0, and using (13.61). As in the case of the Euler equation with 
equal indices, the occurrence of the squared factor (a + 1 ) 2 on the right-hand 
side of (13.67) makesy and by/do satisfy the differential equation when a = - 1 . 
Setting a = -1 in (13.66) and putting b = 1, we obtain 

yi(x)=x~l 

" 2 + 2 2 - 4 ~ 2 2 - 4 2 -6 
(13.68a) 

which is a multiple of (13.64). Differentiating (13.66) with respect to a and set
ting b - 1 yields 

.2 

( o + 3 ) 3 ( a + 5) 

1 

( a + 3 ) 2 (a + 5 ) 2 

which, upon putting a = - 1 , becomes 

y2(x) = yi(x)lnx + x~l 

x* + 

5x4 

2 2 ~ 2 2 - 4 2 
(13.68b) 

Therefore, (13.64) and (13.68b) are two linearly independent solutions of 
(13.58). Using the ratio test, one can easily show that the series in yx and y2 

converge for all values of x. 

THE CASE a2 = a, 

As an example, we consider Bessel's equation of order zero 

xy + y + xy = 0 

Again, substituting (13.45) into (13.69) leads to 

(13.69) 

£ (a + « ) ( o + , i - l ) a / 
n = 0 ,1 = 0 

« = o 

a + ,i + i _ = 0 

or 

£ (a + /i)2tf„x + x = 0 
,1 = 0 

or 
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a2a0x°-1 + ( a + l ) 2 0 , * a + £ (a +n)2anx°+n-1 + £ a„xa+n+l=0 
n - 1 n = 0 

(13.70) 

Setting the coefficients of the first two dominant terms xa~1 and x° equal to 
zero, we have 

< j 2 a o = 0 (13.71a) 

( o + l ) 2 a , = 0 (13.71b) 

Then, (13.70) becomes 

£ (a + n ) 2 ^ * " " 1 + £ a „ x o + , , + 1 = 0 (13.72) 
« = 2 n = 0 

which, upon putting n - 2 = m in the first summation and « = m in the second 
summation, can be rewritten as 

£ J(a + « + 2 ) a a m + a + « w ] j r a * " ' + 1 - 0 
m = 0 

Equating the coefficient of each power of x to zero yields the recurrence relation 

It follows from (13.71a) that the two indices are equal to zero if a0 =£0 and 
it follows from (13.71b) that at = 0. Hence, only one solution of (13.69) can 
be obtained by the straightforward Frobenius procedure. Thus, we first deter
mine y as a function of a. To this end, we find from (13.73) that 

<*3 = o5 = a7 = • • • = a2n+ i - 0 

and 

flp <*2 0j> 
fl2~"(o + 2 ) 2 fl4~"(o + 4 ) 2 (a + 2 ) 2 ( o + 4 ) 2 

Hence, 

y = a0x° 
x2 x 4 x 6 1 

I1 ' (o + 2 ) 2 + (a + 2 ) 2 (a + 4 ) 2 " (a + 2 ) 2 (a + 4 ) 2 ( o + 6 ) 2 + " J 

(13.74) 

Substituting (13.74) into (13.69) yields 

xy"+y' +xy = a0o2x°~l (13.75) 
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Alternatively, one can arrive at (13.75) from (13.70) by noting that ax = 0 and 
using (13.72). As before, the occurrence of the squared factor a2 in (13.75) 
makes y and 9y/9a satisfy the differential equation when a - 0. 

Putting a • 0 and setting a o ' l i n (13.74) leads to the-following solution: 

x^ x^ 

yt ~ 7 0 ( * ) = 1 - ^ + 2 r ^ ~ 22-42-62 + " ' ( 1 3 < 7 6 ) 

Differentiating (13.74) with respect to a and settinga0 - 1, we obtain 
2x2 [ 2 2 1 4 

' (a + 2 ) 3 ~[ (a + 2 ) 3 (a + 4 ) 2 + (a + 2 ) 2 (a + 4) 3J* 
rL=ylnx +x° da 
which, upon setting a = 0, yields the second solution 

y2=yt
 + Y^-*-"- 03 .77) 

Using the ratio te : . o n e ;• v . easily show that the series in yx and y7 converge 
roi sll values of > 

) $£ Singular:** -f ••• 

IR« - t • . iO ' - ' • .". an 2 ;.5 3 , we obtained series solutions for differential equa-
rt.V;; b i n e r i . : . : ' . o c d of a finite point. In this section, we consider solutions 
••: *>Atgfcb». " a of infinity. To determine whether infinity is an ordinary or 
; V.T,: I.av -.v.-: and the type of the singularity, one usually transforms mfinity 
.UO ihe J im: 'ettingz =x~l. Then, 

_d__ d_dz_ __1_ 2d_ 

dx dzdx x2 dz dz 

d2 _2 d 1 d2 d_ 4 d2 

dx2'x3 dz*x4 dz2 dz + Z dz2 

Then, (13.23) becomes 

or 

(13.78) 

Therefore, infinity is an ordinary point of (13.23) if z = 0 is an ordinary point 
of (13.78). Thus, infinity is an ordinary point of (13.23) if 
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are analytic functions, regular in the neighborhood of z = 0; otherwise, infinity 
is a singular point of the original equation. These conditions correspond to 

2x - x2p(x) and xAq(x) 

being expandable in convergent Taylor series in inverse powers of x~x (i.e., 
Laurent series). 

Consider for example 

(13.79) 

Under the transformation z = x _ 1 , it becomes 

^ - 3 ^ + (2z + l ) 7 = 0 (13-80) 
dzl dz 

Since z = 0 is an ordinary point of (13.80), infinity is an ordinary point of 
(13.79). Therefore, the solutions of (13.79) can be expressed in the form 

n = 0 A 

where the an are constants and the series converges. 
As a second example, consider 

(13.82) 

Under the transformation z = x " 1 , it becomes 

Since z = 0 is a regular singular point of (13.83), infinity is a regular singular 
point of (13.82). Therefore, at least one of the solutions of (13.82) can be 
expressed in the form 

y**° £°-£ 03-84) 

where the a„ are constants and the series converges. The second solution has the 
form (13.84) or it can be determined from (13.84) as in the preceding section. 

As a third example, we consider Bessel's equation of order zero 

x / ' + y + x ^ = 0 (13-85) 



344 LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS 

Under the transformation z - x _ 1 , it becomes 

d2y 1 dy 1 
- f + - / + - ^ = 0 (13.86) 
dz2 z dz z 

Since z = 0 is an irregular singular point of (13.86), infinity is an irregular 
singular point of (13.85). Approximations to the solutions of second-order dif
ferential equations in the neighborhood of an irregular singular point are dis
cussed in the next section. 

13.5. Solutions Near an Irregular Singular Point 

As discussed in Section 13.1, if x = 0 is an irregular singular point of (13.23), 
its solutions have the form 

y(x) = eA(x)x°u(x) (13.87) 

where u(x) can be expressed as a power series in x m l n , which need not be 
convergent, and A (x ) is a polynomial in x " m ^ n , where m and n are prime integers. 
When n - 1, the solution is called a normal solution, whereas when n 1 the 
solution is called a subnormal solution. In this section, we consider three ex
amples—one having a normal solution, one having a subnormal solution, and 
one having an irregular singular point at infinity. 

EXAMPLE 1 
As a first example, we consider the following equation, which possesses a 

normal solution near the origin: 

x*y"~(l~3x)y'+y*Q (13.88) 

The origin is an irregular singular point. To determine the form of A (x ) , we 
determine first its leading term. Assuming the leading term in A (x ) to be Ax - " , 
we let 

Then, 

At> 

(13.89) 

A 2 y 2 \v(i. T i l , . . . 

-2Tn^-hrrrUkx 03.90) 
J t * " * x 

Substituting for y , and y" in (13.88) and dividing by x 2 , we obtain 

AV A I<»/+1) \v 3 A i * 1 n , „ n t . 

Since x " 2 " - 2 » x " 1 ' " 2 a n d x " " - 3 » x " p " 2 as x -*• 0, extracting the dominant 
terms in (13.91) leads to 



SOLUTIONS NEAR AN IRREGULAR SINGULAR POINT 345 

\2v2 \v 1 „ 
+ — + j T + - = 0 (13.92) ,2i>+ 2 

Next, we need to equate the coefficients of the powers of x. The result depends 
on the value of v. In this case, it appears that there are three choices: 

2t> + 2 = y + 3 or 2^+2 = 2 or v + 3 = 2 

Thus, it appears that 

v=l or 0 or -1 

However, only the largest value should be chosen; otherwise, the dominant term 
in (13.92) will not be balanced. For example, if we choose u = 0, then the first 
term is 0(x~2), the second term is 0 ( x~ 3 ) , and the third term is 0{x~2). Con
sequently, one cannot choose X to eliminate the dominant term, which in this 
case is the second term. The choice v = -1 would make A (x ) -* 0 as x -+• 0, and 
hence, make exp [A(x ) ] expressible in powers of x, which can be absorbed into 
u(x). 

With v=l, the first two terms in (13.92) are the dominant terms. They can 
be balanced by setting * 

X 2 y 2 + A y = 0 or X2 + X = 0 

so that either X = 0 or - 1 . 
When X = 0, we substitute 

y(x)= Z anx°+n (13.93) 
n = o 

in (13.88) and obtain 

f ) (a + /i)(a + n - l ) f l n x ° + w - ( l - 3 x ) £ (o + n)anx°*n'x 

n = 0 

+ E anxa+n=0 
,1 = 0 

or 

£ (a + * + \)2anx°+n - £ (o + n)anxa+n-1 =0 (13.94) 
n " 0 ft 0 

The dominant term is proportional to xa~1, which corresponds to n = 0 in the 
second summation. Setting the coefficient of x°~ 1 equal to zero, we have 

oa0=0 (13.95) 
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Then, (13.94) becomes 

£ (o + n + l ) V c ° * " - £ (o + n)anxrn-i = 0 
n * 0 n • I 

which, upon putting n = m in the first summation and m = n - 1 in the second 
summation, becomes 

£ [(a + m+iyam-(o + m + \)am,l)xo+m=0 
m = 0 

Equating the coefficient of each power of x to zero, we obtain 

a m + 1 = ( a + m + l ) a m (13.96) 

It follows from (13.95) that o = 0 if a0 0. Then, it follows from (13.96) that 

« m + i = ( w + l ) a m 

Hence, 

Ji =<z0 a2
 = = 2# 0 a3 = 3fl2 = 3la0, 

aA = 4a3 = 4!a0 fls = 5a4 = 5la0 

or 

7 , ( x ) = a 0 [ l + x + 2!x2 + 3 ! x 3 + 4 !x 4 + Six5 + • • •] 

Thus, 

J'.W-flo £ rn\xm (13.97) 
m = O 

Using the ratio test, one can easily show that the series in (13.97) diverges for all 
values of x, and hence, an asymptotic sign instead of an equality sign was used. 
The divergence of the series is not surprising because the origin is an irregular 
singular point. 

When X - - 1 , we put 

y(x) = v(x)exp (1358) 

in (13.88) so that 

( " " + ? " ' - ? , ' + 7 1 ' ) e x p B 
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Substituting for y, y\and y" in (13.88), we have 

2 1 , 1 , 3 
x2 v" + 2v — v + —ry - y' — - y + 3xy' + — v + y = 0 

x x x x 

or 

x 2 y " + ( l + 3x)y '+ (^+ ?j v = 0 (13.99) 

Since the exponential part exp [A(x ) ] was taken out of y(x), the solution for 
y(x) is sought in the Frobenius form 

y (x )= £ anxa+n (13.100) 
n = 0 

Substituting (13.100) into (13.99) yields 

£ (a + « ) ( < ; + n - l ) f l / + " + £ (a + « K * 

n = 0 m — 0 

er+ n - 1 

+ 3 £ (a + / i K x ° + " + X a ^ " " ^ Z onx°+n=0 
n = 0 n = 0 n — 0 

or 

JT (a + n + l ) f l / + f l - 1 + £ (a + n + l ) 2 f l n x o + , , = 0 (13.101) 

n = 0 m = 0 

Setting the leading term in (13.101) equal to zero yields 

( a + l ) f l 0 = 0 (13.102) 

Then, (13.101) becomes 

£ (o + n + l ) f l / + " - 1 + f ; (o + « + l ) 2 a r t x o + , , = 0 
n = 1 n = 0 

which, upon putting « - 1 = m in the first summation and n = m in the second 
summation, becomes 

JT [(o + m + 2)am+1 + (o + m + l ) 2 a m ] x ° + m = 0 
m = 0 

Equating the coefficient of each power of x to zero, we have 

(a + /w + l ) 2 

o + + 2 
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m + 1 

Hence, a, = a2 = a3 = • • • = am - 0 for m 0, and the series(13.100)terminates. 
Therefore, when a0 = 1, 

r 2 ( * ) = j e x p (13.104) 

Since the exponent in (13.104) involves inverse powers of x, y2(x) is a normal 
solution. 

EXAMPLE 2 
As a second example, we consider the following equation that possesses 

subnormal solutions near the origin: 

x V ' - x V - 7 = 0 (13.105) 

Since the origin is an irregular singular point, the solutions of (13.105) have the 
form (13.87). To determine the form of A (x ) , we assume that the leading term 
has the form (13.89). Substituting (13.89) and (13.90) into (13.105) leads to 

^ + - ^ r r
J + ^ r z T - l + - - = 0 (13.106) 

whose dominant terms are the first term and perhaps the last. Balancing these 
terms demands that v - \ and X 2 P 2 * 1. Hence, X = ±2. Setting v = \ in (13.106) 
confirms our stipulation that the first and last terms are the dominant terms. 

With the above choice,y has the form 

y = e t l x ' m v{x) (13.107) 

Since the exponent in (13.107) involves fractional inverse powers o fx , the solu
tion is called a subnormal solution. It follows from (13.107) that 

y = ( i/+-x- 3/ 2y)exp ( ±2x - 1 / 2 ) 

y" « (u" * 2 x " 3 / V + x~\ ± |x~5/2i;) exp ( ±2x - 1 / 2 ) 

Substituting for >>, y\ and y" in (13.105), we obtain 

x V T 2 x 3 / V + v ± \xxllv x V ±xl/1v - o - O 

or 

x V - ( x 2 ± 2x 3 ' 2 ) t/ ± |x»/2y = 0 (13.108) 

Next, we seek the solutions of (13.108) in powers of x 1 ' 2 as 

It follows from (13.102) that a - -1 when a0 =£0, and then it follows from 
(13.103) that 
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y ~ £ anx(o+"V7 (13.109) 
n = 0 

which, when substituted into (13.108), gives 

Z i(a + *)(a + w - 2 K x < 0 + n + 2 > / 2 - £ j(a + n K * < a + r t + 2 ) / 2 

n = 0 , i = 0 

,?2X 4(a + nKjc< 0 + n + , >/ 2 ± | £ a„x<°*'**1>/2
 = 0 

n = 0 n = 0 

or 

£ i(a + n)(a + « -4 ) a , l x ( o + , , + 2>/2+ £ (±-| T a + n)anx^°* n* ! ^ 2 = 0 
« = 0 n = 0 

(13.110) 

The dominant term in (13.110) is the one proportional to x^a* l^2, correspond
ing to n = 0 in the second summation. Setting this term equal to zero yields 

( ± f + o > 0 = 0 (13.111) 

Then, letting m = n in the first summation and n - 1 = m in the second summa
tion, we rewrite (13.110) as 

£ ( i (o + m) (a + m - 4)am + (±f + a * m + l ) a m + JJC<°+ m + 2 ) / 2 = 0 

m - 0 

Equating the coefficient of each power of x to zero yields 

(a + m) (a + m - 4) 
4(±f +a + m? 1) 

(13.112) 

It follows from (13.111) that a = § when a 0 ^ 0. Then, (13.112) becomes 

Hence, 

(m + |)(m- 4) 

4(m + l ) ( 1 3 U 3 ) _ 3 - 5 7 -1 3 - 5 - 7 

9 1 3 • 5 • 7 • 9 

11-3 3 2 - 5 - 7 - 9 11 
fl4=±l6^fl3= 1 6 * 4 ! * ° 
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Hence, 

' , G 0 ~ e » * " V 4 [ l 
3 • Sx1'2 3 • 5 • 7x 3 • 5 • 7 • 9 x 3 ' 2 

16 16* • 2 + 16 s - 3 ! 

3 2 - 5 - 7 - 9 - l l x 2
 , . . . . . . v 

+ + • • • ( 13 .114 ) 
1 6 4 - 4 ! 1 

3 • 5 x 1 / 2 3 • 5 • Ix 3 • 5 • 7 • 9 x 3 / 2 

16 1 6 2 - 2 1 6 3 - 3 ! 

3 2 • 5 • 7 • 9 • l l x 2 

3 ' * 1 + • • . (13.1 
1 6 4 - 4 ! J 

15) 

Using the ratio test in ( 13 .109) , we have 

, ( w + l ) t h t e r m , a m + , x ( o + m + 1 ) / 2

 1 / 2 , a m + 1 

lim 1 = lim fo+mwi—= x 1 - 2 ^ - > ± o e 
m— » mthterm m - * ~ amxy }l m —«» j m 

according to (13.113). Hence, the series (13.114) and (13.115) are asymptotic 
and for this reason an asymptotic rather than an equality sign was used. 

EXAMPLE 3 
As a third example, we consider an approximation for the solutions of Bessel's 

equation of order zero 

xy" + y+xy = 0 (13.116) 

for large x. As shown in Section 13.4, infinity is an irregular singular point. 
Hence, the solutions of (13.116) for large x have the form 

y(x)^eA(x)x°u(x) (13.117) 

where A is a polynomial in xm/n with m and n being prime integers and u(x) 
can be expressed in a series in inverse powers of xmln. 

To determine the form of A, we assume that the leading term has the form 

y~ex*V (13.118) 

Then, 

y'-Xux"-^*" / ' - [ a W ' 2 l ) * " - 2 ] ^ * " 

Substituting for y, y, and y" in (13.116) leads to 

X V * 2 " * 1 + \i4y- l)xv~1 + \wcv~1 + x+ - = 0 (13.119) 

As x -»«>, the dominant terms are the first and last terms in (13.119), which, 
when balanced, yield 
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v=\ and X = ±* (13.120) 

With X = i , we put 

y = eixv(x) 

in (13.116) and obtain 

x(u" + 2iv - v) + v + iv + xv = 0 

or 

xv" + (2ix + \)v +i'u = 0 (13.121) 

Next, we seek a solution for (13.121) in the form 

n = 0 

and obtain 

Z (o + n)(o + n+l)anx-°-n-i -2i Z (o + n)a„x-°-n 

n - 0 « = 0 

- £ (o + n)anx-°-n-1 + i £ ^ x - ° - n = 0 
n = 0 

or 

£ (a + n ) 2 f l „ x ^ ° - n - 1 + i £ ( 1 - 2 a - 2 / i ) a r j x - a ~ ' , = 0 (13.123) 
rt = 0 n = 0 

The leading term is proportional to x~°, corresponding to n = 0 in the second 
summation, which, when set equal to zero, yields 

( l - 2 a ) a 0 = 0 (13.124) 

Then, letting m = n in the first summation and n - 1 = m in the second summa
tion, we rewrite (13.123) as 

Z [(p + mfam " i (2a+ 2m + l ) « m + J x " 0 " " ' - 1 = 0 
w = o 

Equating the coefficient of each power of x to zero yields 

s = ~T~IT~T!a™ (13.125) 2o + 2m + 1 

It follows from (13.124) that o-\ when a 0 =£0, and then it follows from 
(13.125) that 
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lm * 1 

Hence, 

A , = -
ia0 

4 - 2 
a-, -

2(m+ 1 ) ' 

3 2 w, 1 • 32fl 0 

4 - 2 2 4 2 - 2 3 

52ia2 _ l - 3 2 - 5 2 / q 0 

4 - 3 ! ~ 4 3 - 2 3 - 3 ! 

a 4 = 
7 2 w 3 1 • 3 : 7 2 a 0 

4 - 2 - 4 4! 

Therefore, for af) = 1 

7 
= eixx-i,2 1 -

1 1 - 3 ' 
/ -

l - 3 2 - 5 2 . 
+ —. : -I 

4 - 2 * 4 2 - 2 2 - 2 ! x 2 4 3 • 2 3 • 3!x3 

/°° as m 

1 • 3 2 • 5 2 • 7 2 

* 4 4 • 2 4 • 4!x4 * ' " I 3 5 ( 1 3 J 2 6 ) 

Since the ratio of two successive terms 

»(2m+ l ) 2 

—_ —• 
8(m + l ) x 

the series in (13.126) diverges for all values of x. However, for large values of 
x, it is an asymptotic expansion because the leading terms diminish very rapidly 
as m increases. Using \ = - / yields the complex conjugate. 

Separating (13.126) into real and imaginary parts yields the following two 
linearly independent solutions of (13.116): 

yx ~ x ~ ^ 2 ( u cosx + usinx) 

y2 *~ x~^7(u sin x - v cos x ) 

(13.127) 

(13.128) 

where 

u ( x ) = l 

!<*)« 

l 2 - 3 2 l 2 - 3 2 - 5 2 - 7 2 

+ : : — + 4 2 • 2 2 • 2!x2 4 4 • 2 4 • 4!x4 

1 l 2 - 3 2 - 5 2 

Therefore, 

4 • 2x 4 3 • 2 5 • 3 U 1 

JQ(X) ~ Ay i + By 2 as x 

(13.129) 

(13.130) 

(13.131) 

where A and B are constants to be determined from the usual initial conditions 
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/ 0 ( 0 ) = 1 and J'o(0) = 0. However, (13.131) is not valid for small x and, in fact, 
it blows up as x 0. Hence, the initial conditions cannot be applied directly to 
the above asymptotic development. To circumvent difficulties of this type, 
one usually tries to determine an integral representation of the function under 
consideration that satisfies the initial conditions. Then, by determining the 
leading term in the asymptotic development of the integral, one can relate the 
constants in representations, such as in (13.131), to the initial conditions. 

An integral representation of J0(x) can be found as follows. We expand the 
function exp (ix sin 0) in ascending powers of JC and obtain 

.• «.-„ a ix sin 0 ( ixs inf l ) 2 (ix sin 0 ) 3 

etx s i n e = j + + 1 i_ + i L- + ... 

1! 2! 3! 

~ (ix sin 9)n 

= Z 1 T2- (13.132) 

Since 

nth term (ix sin 6)n (n - 1)! 
lim —• — = lim 

(n - l)th term n - 0 0 n\(ix sin 6) n - i 

the series (13.132) converges for all values of x. Integrating both sides with 
respect to 6 from 0 to 2n gives 

- / eix*in6de= Z / sin" Odd (13.133) 
2 

But, it follows from (,438) that 

2*X 

2 7 T 

sin" Bdd = 0 if n is odd 

= 1 if/i = 0 
_ (n - 1) (n - 3) • • • 3 • 1 

if n is even 
n(n - 2) • • • 4 • 2 

Then, it follows from (13.133) that 

1 / » 2 7 T 2 4 6 

— / e
i x s i n edd = 1 - — + — - - + ••• m 134) 

2nJ0 22 2 2 - 4 2 2 2 - 4 2 - 6 2 V*-***) 

Since the series on the right-hand side of (13.134) isJ0(x) according to (13.76), 

dd (13.135) 
2n 

„ ix sin 0 
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which is the desired integral representation. 
Next, we determine the leading term in the asymptotic development of 

(13.135) for large x. To accomplish this, we use the method of stationary phase 
and note that the stationary points are given by cos 0 • 0 or 0 » ±^ n. Since in 
the neighborhood of 0 = ±\ ir 

sin 0 = ±[1 - \(d ? | T T ) 2 + • • • ] (13.136) 

the leading term in the asymptotic development of the integral is given by 

J o ( - X ) ^ 2 l t e i X I _
 e~(l,1)iXtl dt +

 :te~iXf e ( l , 2 ) i x t l d t (13.137) 

where t~6 ± %7i, according to Section 3.4. The integrals in (13.137) can be 
transformed into Laplace integrals by rotating the contours of integration by the 
angles and \ it, respectively.The result is 

J0(x)~~ — eix \ e-W*'2 dt + — e~ix / dt 
2ir J _ o . e - ( i / 4 ) / n 2n J_„e (I/4)/TT 

(13.138) 

Letting t = \J2 rx~x'2 exp(-^/rr) in the first integral and t = y/2 TX'1'2 exp • 
(•\iir) in the second integral, we rewrite (13.138) as 

y 0 ( x ) L ^ ' l * - 0 / 4 * ) f e V r f r + _ l e - f l* - < i/4> , r | f e-r> d T 

or 

y 0 ( x ) —jL= o/*)«i + e<*- WW] 
\j2nx 

on account of (3.25). Hence, 

M*) ~ V — cos (x - \ n) as x -+ °° (13.139) 
f itx 

Asx -•«>, it follows from (13.127) through (13.130) that 

yt ~ x - 1 / 2 cosx and y2 ~ x - 1 ' 2 sinx 

Hence, it follows from (13.131) that 

J0 ~x~l/2(A cosx + Bsinx) (13.140) 

Equating (13.139) and (13.140), we have 

file:///j2nx
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|/~~(cosx cos -i7T + sin.x sin ^n) = A cosx + B sinx 

so that 

A - cos \ -n B - "y/̂- sin \ it 

Substituting for A and B in (13.131) and using (13.127) and (13.128), we obtain 

J0(x) ~ ["(cos x cos 4- 7T + sin x sin ^ it) + u(sin x cos ^ w - cos x sin \ ii)] 

or 

• fo (x )~ V ~~ [u cos(x - 7̂r) + usin (x - 7̂r)] as x - * « > (13.141) 
Y itx 

Equations (13.76) and (13.141) are two different representations of the same 
function J0(x). The first representation involves a series that converges for all 
values of x, whereas the second series diverges for all values of x. As mentioned 
in Chapter 1, although the convergent series (13.76) provides an excellent repre
sentation for small values of x, it is useless from the computational point of view 
for very large values of x, owing to the finite word length of modern computers. 
In fact, any attempt to evaluate JQ(X) for large x from the convergent series 
using a computer fails beyond a given value of x ; this value depends on the skill 
of the programmer. However, although the divergent series (13.141) is useless 
for small values of x, it is an excellent representation of J0(x) for large x. In fact, 
its accuracy increases with increasing x. 

Exercises 

13.1. Determine two linearly independent solutions of each of the following 
equations: 

(a) xy"+y' = 0 
(b) x V W = 0 

(c) x2y" + xy' - y = 0 
(d) x 2 v " + 2x/-4 j> = 0 
(e) x2y" - xy +y = 0 

13.2. Determine three linearly independent solutions of each of the following 
equations: 

(a) x V " + 2 x v " - 2 / = 0 
(b) x 3 / " - 3xy' + 3y = 0 
(c) x V ' " + 2 x V - 3x/ + 3^ = 0 
(d) X 3 / " - 6 x 2 / ' + ixy - ly = 0 
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13.3. Determine two linearly independent solutions o f each o f the following 
equations near the origin and determine the radius o f convergence for each series: 

( a ) y"-xy = 0 
( b ) y" + xy'- 27 = 0 
( c ) y" +/ " 2xy = 0 
( d ) y" - xy - y = 0 

13.4. Consider the Hermite equation 

y" - 2xy + yy = 0 

Determine two linearly independent solutions of this equation in power series 
near the origin and show that one o f them terminates if y * 2n, where n = 0, 1, 
2, • • • . 

13.5. Consider the Legendre equation 

(1 -x7)y" - 2 x7 ' + 77 = 0 

Determine two linearly independent solutions of this equation in power series 
near the origin and show that one of them terminates if 7 = n ( n + 1), n = 0, 
1 , 2 , - - - . 

13.6. Determine two linearly independent solutions in power series near the 
origin o f the Tschebycheff equation 

(1 - x2)y" - xy' + yy = 0 

and show that one o f them terminates if 7 = n2, n = 0, 1, 2, • • •. 
13.7. Determine two linearly independent solutions in power series near the 
origin for each o f the fol lowing equations: 

(a) 4x7" + 2 7 ' - 7 = 0 
( b ) ( 2 x + x 2 ) 7 " + 7 ' - 6x7 = 0 
( c ) 9x ( l - x)y" - 127 '+ 47 = 0 
( d ) 2x ( l - x ) 7 " + ( l - x ) 7 ' + 37 = 0 

13.8. Determine two linearly independent solutions in power series near the 
origin for each of the following equations: 

( a ) x27*' + x(x - 1 )y - xy = 0 
( b ) x V ' + X 7 ' + (x2 - 4)7 = 0 
( c ) (1 - x2)y" - Ixy + 2 7 = 0 
( d ) x ( l - x)y" - 3xy' - 7 = 0 
( e ) 7 " + x 2 7 = 0 
( f ) (2 + x 2 ) 7 " + * 7 ' + U + x ) 7 » 0 

13.9. Determine two linearly independent solutions in power series near the 
origin for each o f the fol lowing equations: 

( a ) X7" + ( I +x )7 ' + 27 = 0 
( b ) ( * ~ x V ' + ( l - x ) 7 ' " 7 = 0 
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(c) (x - x2)y" + (1 - 5x)y' - 4y = 0 
(d) 4(x4 - x2)y" + 8 * V - 7 = 0 

13.10. Determine two linearly independent solutions in power series near the 
origin for each of the following equations: 

(a) x2y"+x2y' - 2 7 = 0 
(b) xy" - (1 + x ) 7 ' + 2 ( l - J C ) 7 = 0 

13.11. Show that the origin is an apparent singularity for the equation 

when (a) X2 = - Xj, (b) X2 = -2X,, and (c) X3 = -3^. (Hint: Show that none of 
the solutions are singular at x = 0.) 
13.12. Show that 

x2y" - (4x + \tx2)y' + (4 - X 2 x ) 7 = 0 

7 i x+ — x2 + 
7! 

27 

1! 4! 10! 

are linearly independent solutions of 

9x2y"' + llxy" + By - y = 0 
13.13. Show that 

are three linearly independent solutions of 

x2y" + 3 x 7 " + (1 - x)y' - 7 = 0 
13.14. Show that 

7 = cx exp \x + — + c 2 exp I ~x 

is the general solution of 

* 4 ( 1 - x2)y" + 2x3y' - (1 - x 2 ) 3 7 = 0 
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Show that both the origin and infinity are irregular singular points o f this 
equation. 

13.15. Determine two linearly independent solution*, near the origin for each 
of the following equations: 

(a ) J C V ' + X (1 - lx)y - 27 = 0 
( b ) x 4 / ' + 2 x V - 7 = 0 
( c ) x V ' + 2 ( | - x ) / - ^ 0 

13.16. Determine t w o linearly independent solutions for large x for each o f the 
following equations: 

( a ) \6x2y" + 32xy'- (Ax + 5)7 = 0 
( b ) JC7" + 2(1 - J C ) 7 ' - 7 = 0 
( c ) 4x2y" + 8x7' - (4x2 + 3 ) 7 = 0 

13.17. Consider the modified Bessel equation of zeroth order 

xy + 7 _ xy — 0 

( a ) Show that it has the following bounded solution at the origin: 

x2 x4 x6 

Io(x) = 1 + t + —z 7 + —z 7 + . . . 

2 2 2 2 . 4 2 2 2 . 4 2 . 6 2 

Determine the second solution. 
( b ) Determine an asymptotic solution for large x ; it involves an arbitrary 

constant. 
( c ) Show that -

( d ) Determine the asymptotic expansion for large x of the integral in ( c ) 

and use it to determine the constant in ( b ) . 

13.18. Consider Bessel's equation o f order one 

x2y" + xy' + (x2 - 1)7 = 0 

(a ) Show that one o f the solutions of this equation can be expressed as 

which converges for all x . Determine the second solution. 
( b ) Expand sin 8 exp (tx sin 6) in powers of x , integrate the result with 

respect to 6 from 0 to 2?r, and obtain 
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(c ) Determine the asymptotic expansion of the solution of the equation for 
large x; it involves two arbitrary constants. 

(d) Determine the leading term in the asymptotic expansion of the integral 
in (b) for large x and use it to determine the constants in (c). 
13.19. Determine approximations to three linearly independent solutions for 
large x for each of the following equations: 

(a) x V " + 6 x V ' - v = 0 
(b) xy"- (2x+ 1 ) / ' - (1 +x)y' + (2x + 3 )v = 0 

13.20. Consider Bessel's equation of order v 

x2y" + xy + (x2 - v2)y = 0 

(a) Show that 

. . . f ( -1 ) " ( x /2 ) 2 " * " 
U X ) - £ Q + * + 1 ) 

When v is different from an integer show that 

- ( -1 ) " (x/2)2n~v 

„~0 n\T(-v + n + 1) 

(b) Show that for large x 

y~Ayx +By2 

where 

1 
y ~ 

y/x 
(c) Use the integral representation 

2axy 

i + - - + - f + 
X X 

ro + j - f (l - t2)v-W2) cosxtdt v>-\ 
7 ) J O 

and show that 

Y IDC 
cos (x - \vn - \TT) as 

(d) Use the result in (c) to determine A and B in (b). 



CHAPTER 14 

Differential Equations with a 
Large Parameter 

In this chapter, we discuss approximations to the solutions of homogeneous 
second-order differential equations contdning a large parameter having the form 

y"+p(x>\)y'+q(x;\)y=0 (14.1) 

where X is a dimerrionless parameter that is much much bigger than one. Equa
tion (14.1) can be transformed into one without the first derivative by making 
the substitution 

y(x)=P(x)u(x) 

so that 

y = P'u + Pu' y" = P"u +2P'u+ Pu" 

Substituting fory,y\ and>>" in (14.1) leads to 

P"u + 2P'u + Pu" + pP'u + pPu +qPu = 0 (14.2) 

Setting the coefficient of u equal to zero, we have 

2/>' + pP = 0 (14.3) 

Then, (14.2) becomes 

fP" PP' 
u=0 (14.4) 

= - j p dx 

Separating variables in (14.3), we have 

dP 

P 

which, upon integration, gives 

In P = - j jp dx 

360 
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or 

P = txp[-1 fpdx] (14.5) 

Then, 

F - = - i p e x p [-\fpdx], 

P" = (-ip' + ip2)exp[-{fpdx) 

and (14.4) becomes 

u"+k-ip2-ip')u=0 (14.6) 

Thus, we need only to investigate the solutions of the standard form 

/ ' + <7(x;X}y = 0 04 .7 ) 

because equations of the form (14.1) can be transformed into this standard 
form. As an example, consider Bessel's equation of zeroth order 

xy"+y'+xy = 0 * (14.8) 

In this case,p = x _ 1 and q = 1, and (14.6) becomes 

M " + ( 1 + 4 ^ ) M = 0 ( 1 4 ' 9 ) 

In fact, the standard form is convenient for obtaining the asymptotic solution 
for large x. 

In this chapter, we investigate the special class 

y"^[\2q1(x) + q2{x))y^0 (14.10) 

of (14.7), which is usually referred to as Liouville's problem. We start with the 
WKB pproximation, then the Liouville-Green transformation, and finally the 
Langer transformation in case of turning or transition points. 

14.1. The WKB Approximation 

We assume that q\(x) is differentiable and q2{x) is continuous in the interval 
of interest. Dividing (14.10) by X2, we have 

^ Z + ̂  + ^ - ^ - O (14.11) 

Letting A->«» in(14.11) leads to 

qyy = 0 (14.12) 

which yields the trivial solution. Therefore, we cannot determine an approxima
tion to the solution of (14.10) by seeking solutions in the form 

file://-/fpdx
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or 

Go
2 + lGoG'1+q1+}-G'o + - - = 0 (14.19) 

X X 

y(x)=yo(x) + ±-yi(x)+-- (14.13) 

as we did in the preceding chapters. 
To motivate the method that can be used, we consider the simple problem in 

which qx is a constant and q2 - 0. Then, the solution of (14.10) can be written as 

y = C x e i X ^ x + c2e-iK^x (14.14) 

where cx and c2 are constants. When qx is negative, the solution of (14.10) can 
be written as 

yx = c x e K ^ x +c2e-K^-*x (14.15) 

In either case, two linearly independent solutions of (14.10) can be expressed in 
exponential forms with the parameter X appearing in the exponents. Hence, in
stead of seeking a straightforward expansion in inverse powers of X, we seek an 
expansion for.y in (14.10) in the form 

where G has a straightforward expansion in inverse powers of X. Differentiating 

(14.16) twice yields 

y' = \G'ekG y" = ( X 2 G ' 2 + \G")eXG 

Substituting for y,y', andy" in the linear equation (14.10), we transform it into 
the following nonlinear equation: 

x ^ + x C ' + x V + ^ o 
or 

G'2+qx+^G" + ^q2=0 (14.17) 

As discussed above, we seek a straightforward expansion for G in the form 

G(x\ X) = G0(x) + \ Gx(x) + •"• • (14.18) 
X 

Substituting (14.18) into (14.17), we have 
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Equating the coefficients o f X° and X" 1 to zero , we obtain 

Go 2 +<7 !=0 (14.20) 

G'o + 2 G o G ; « 0 (14.21) 

It fol lows from (14.20) that G o 2 = - qx, so that 

Cl.fJ^L " (14.22) 

Then, 

- • [ * ' / > £ • > l f « " > 0 (14.23) 

To solve (14.21), we divide it first by 2G 0 and obtain 

1 Go „ i „ 

- ~ £ + G ; = O 

which, upon integration, gives 

Gi + { In G'o = 0 

The constant of integration is not needed as it becomes clear below. Hence, 

G, = - l n V G l (14.24) 

Substituting for G0 and Gx in (14.18) gives 

G = ±i Jy/q~i~dx- ^-[In V ± i + In^7] + • • • i f t ? 1 > 0 (14.25) 

and 

G = ± j V r ? 7 < 2 x - ^ [ ln>/±T + ln sTq^] +- - if ^ ! < 0 

Substituting (14.25) into (14.16), we have 

y = exp {±/X/V57 'dx - [Inyfti + In \Z57] + • • •} 

which, upon using the fact that exp (- In z) = z " 1 , can be rewritten as 

exp [±/X f\fq[dx\ 

(14.26) 

(14.27) 

Equation (14.27) provides two linearly independent approximate solutions of 
(14.10). Expressing the exponentials in terms of trigonometric functions, we can 
write an approximation to the general solution of (14.10) in the form 
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~ c ' c o s (A fVk~idx] + c2 sin [X fs/qjdx] 
(14.28) 

where cx and c2 are arbitrary constants. Substituting (14.26) into (14.16) and 
following steps similar to the above, we can write an approximation to the gen
eral solution of (14.10) for the case qx < 0 as 

^ cx exp [X/%/-<yt dx] + c2 exp [- Xfy/-q\ dx] 
(14.29) 

Equations (14.28) and (14.29) are usually referred to as the WKB approximation 
after Wentzel, Kramers, and Brillouin. We note that (14.28) and (14.29) break 
down at or near the zeros of qx(x). These zeros are called turning or transition 
points. Turning point problems are discussed in Sections 14.5 and 14.6. 

As an example, we consider 

y" + X2(1 +x)7y = 0 

so that qx = (1 + x ) 2 > 0 and (14.28) yields 

c x cos [X(x + \ x2)] + c2 sin [X(x + \ x2)] 

y * * \ / f + x 

As a second example, we consider 

X 2 ( l +x)V = 0 

so that qx = - (1 + x)2 and (14.29) yields 

_ cx exp [X(x + ~ x 2 ) ] + c2 exp [- X(x + \ x2)] 

(1430) 

(1431) 

(1432) 

(1433) 

14.2. The Liouville-Green Transformation 

In this section, we consider an alternative to the derivation in the preceding 
section. This involves the use of the so-called Liouville-Green transformation 
to transform both the dependent and independent variables as 

z = 0 ( x ) v(z) = 4>(x)y(x) (14.34) 

where 0 and \p are to be chosen so that (14.10) is transformed into an equation 
whose dominant part has constant coefficients. It follows from (1434) that 

J K X ) = ^ (1435) 
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<f> dv 
—r V + 
i>2 \frdz 

2» + T - 04 .36) 

+ xp dz2 dx dx2 " ~dx U 2 / V ~ ^ dz dx + dx\rp)dz 

H r ^ / T O " " ^ - ) 1 ' ( 1 4 J 7 ) i// dz2 

Substituting fory and';/' in (14.10), we obtain 

0 ' 2 c?2 

\p dz 

or 

As mentioned above, the functions 0 and \p are to be chosen so that the domi
nant part of the transformed equation (14.38) has constant coefficients. To this 
end, we force the coefficient of dv/dz to be zero by putting 

0"_21±= O ( 1 4 3 9 ) 

Equation (14.39) can be solved by separating the variables; that is, 

£__£ 
20' * 

Hence, 

or 

Then, (14.38) becomes 

where 

d2 

dz 

\ In 4> = In 0 

t// = (14.40) 

T + ( ^ T + * ) w - 0 (14.41) 

5 = % - - ^ + Tr75- (14.42) 

Equation (14.41) has two variable-coefficient terms, namely <7 j/0 ' 2 and 5. 

file:///frdz
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0 ' 2 = 

Then, 

\2qx if qx>0 

-\2qx if <7i<0 

= 0 = . 
±Xfy/q7dx if <?i > 0 

±\fy/rq~idx if qx<0 
(14.43) 

* B M/2 4 / — : , _ ^ 04.44) 

and it follows from (14.40) that 

= { x , / 2 V ^ 7 if <7i<0 

With the above choice, (14.41) becomes 

d2v 
j 2 ± v = -6v (14.45) 
dz 

where the positive and negative signs correspond to the cases of positive and 
negative q x, respectively. 

To the first approximation, we can neglect the small term -ou on the right-
hand side of (14.45) and obtain 

d2v 

whose general solution can be expressed as 

v -cx cosz + c2 sin z if tfi>0 (14.46) 

" = c ,e z + c 2 < f z if o , < 0 (14.47) 

Substituting for 2 , \p, and v in (14.35), we obtain to the first approximation 
(14.28) when qy > 0 and (14.29) when qx < 0. 

14.3. Eigenvalue Problems 

In this section, we use the WKB approximation to determine the eigenvalues 
and eigenfunctions of some second-order differential equations with variable 
coefficients. As an example, we consider the eigenvalue problem 

y"+ \2qt(x)y = 0 (14.48) 

Since we have imposed only the condition (14.40) on <j> and \p, we still have the 
freedom of imposing another condition. We use the second condition to make 
the dominant term in (14.41), namely \2q\l4>'2> constant, thereby transforming 
(14.10) into an equation whose dominant part has constant coefficients. Thus, 
we put A2<h/V2 " constant. Without loss of generality, the constant can be 
taken to be 1 if qx > 0 and - 1 if qx < 0. Hence, 
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>-(()) = 0 y(l) = 0 (14.49) 

for large X and qx > 0 in [0,11. Since a, > 0, the general solution of (14.48) is 
given to the first approximation by (14.28). Next, we need to satisfy the bound
ary conditions in (14.49). To facilitate the satisfaction of these conditions, we 
take the lower limits of the integrals in (14.28), without loss of generality, to 
be the left end of the interval of interest; in this case, it is x - 0. Thus, we re
write (14.28) as 

c , c o s | x J * V<7i(r)dTJ + c 2 s in jx j V<7I(T)</TJ 

V<Ii(x) 

where T is a dummy variable of integration. Putting.y (0) = 0 in (14.50) gives 

(14.50) 

° * W ( 0 ) 
or C\ = 0 

so that (14.50) becomes 

y ^ c2q~\l!* sin s m | x j V0I ( T ) < * T | 

Imposing the boundary conditiony(l) = 0 yields 

0 = c 2 ^ 1 ( l ) ] - 1 / 4 s i n j ^ x j T v^ iOO^r ] 

For a nontrivial solution, c 2 0, and hence, 

sin ^X j V5T ( r)^J = 0 

or 

(T)dT = nir n = 1,2,3, •• 

where n = 0 is excluded because it corresponds to the trivial solution. Hence, 

X„ = nit | 

corresponding to the eigenfunction 

Jo 
(14.51) 
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(14.52) 

When qt(x) * (1 + x ) 2 

Table 14-1 compares the approximate eigenvalues with those obtained by a com
bination of a numerical integration of the original problem and a Newton-
Raphson iteration technique. The agreement is very good even for the lowest 
eigenvalue, which is about 2.0604, a not very large number. As expected, the 
accuracy of the perturbation solution improves as the eigenvalue increases. 

As a second example, we consider (14.48) subject to the boundary conditions 

/ ( 0 ) = 0 7 ( 0 = 0 (14.53) 

To impose the first boundary condition, we differentiate (14.50) with respect 
to x and obtain 

- c 2 c o s | x J ^ V ^T ( r ) r f r j | + 0 ( l ) (14.54) 

We note that the terms that arise from differentiatingq~iif* are 0 (1 ) , and hence, 
small compared with the terms that arise from differentiating the circular func
tions because they are 0(\). Imposing the condition y'(0) « 0 demands that 
c 2 = 0, so that (14.50) becomes 

y™*cxq\llA cosj^X J* V<7i(r)dr 

Then, imposing the conditiony(l ) = 0 demands that 

TABLE 14-1. Comparison of Perturbationally and Numerically 
Calculated Eigenvalues 

Eigenvalue Number 1 2 3 4 5 6 7 
Perturbation Result 2.0944 4.1888 6.2832 8.3776 10.4720 12.5664 14.6608 
Numerical Result 2.0604 4.1686 6.2691 8.3668 10.4632 12.5590 14.6545 
Error (%) 1.65 0.49 0.23 0.13 0.08 0.06 0.04 
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T A B L E 14-2. Comparison of Perturbationally and Numerically 
Calculated Eigenvalues 

Eigenvalue Number 1 2 3 4 5 6 7 
Perturbation Result 1.0472 3.1416 5.2360 7.3304 9.4248 11.5192 13.6136 
Numerical Result 1.1879 3.2089 5.2793 7.3621 9.4497 11.5397 13.6310 
Error (%) 11.84 2.10 0.82 0.43 0.26 0.18 0.13 

cos 
. Jo 

or 

X [ V<7i(r)dT = («+ i ) 7 T n=0, 1,2, • • 

Hence, 

- l 

corresponding to the eigenfunction 

yn
 = ? i 1 / 4 cos | A, 

For the case qx = (1 + x ) 2 , 

•Jo 
(T)dT 

(14 .55 ) 

(14 .56 ) 

X«=(« + i)7r[jf (H-r)dr j =l(n + i)ir 

Table 14-2 compares the approximate eigenvalues with those obtained by a com
bination of a numerical integration technique and a Newton-Raphson iteration 
technique. As expected, the accuracy of the approximate solution improves as 
the eigenvalue increases. In fact, the error in the approximate third eigenvalue is 
less than 1%. 

14.4. Equations with Slowly Varying Coefficients 

In this section, we consider equations of the form 

<l7y 
dt 2+<ti(T)y " 0 (14.57) 

where T = et and e is a small dimensionless parameter. Thus, r is a slow variable 
compared with t. Changing the independent variable from t to T , we Find that 
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14.5 Turning-Point Problems 

As discussed in Section 14.1, the WKB approximations (14.28) and (14.29) 
break down at or near the zeros of qx(x). These points are called turning or 
transition points. For example, when qy - 1 - JC 3 , (14.28) and (14.29) become 

cx cos jx j Vl - T 3 dr + c2 sin ^ X J Vl - T 3 dr\ 

y» ; y = = j £ 

(14.62) 

where the upper limit is taken to be 1 so that the integrals will be positive and 

ai exp \ X f V r 3 - 1 drl + a2 exp [- X f V r 3 - 1 J T ] 

„ « ^ 1 J l i i f , > i 
V J T - 1 

(14.63) 

dy _dy dr _ dy 

dt dr dt dr 

d\v 3 d2y 
• - MM *r* —• 

dt2 dr2 

so that (14.57) becomes 

€20 + fli(r)7=O (1458) 

Letting e - X " 1 , we rewrite (14.58) as 

^ + X 2 < 7 i ( r ) . y = 0 (14.59) 

which has the same form as (14.10) so that the WKB approximation in Section 
14.1 holds for this case. Since 

dr = eXjyfc dt = fy/q^ dt 

we rewrite (14.28) and (14.29) as 

y * < h 1 / 4 {c, cos [fyfcdt] + c 2 sin [Jyfadt]} > 0 (14.60) 

y ^ ( - q i T x l 4 [ c i e ^ d t + c 2 e - ^ d t ) a, < 0 (14.61) 
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where ax, a2, cx, and c2 are constants and the lower limit is taken to be 1, so 
that the integrals will be positive. In turning-point problems, it is convenient to 
set one of the limits in the integrals to be the location of the turning point. Thus, 
(14.62) and (14,63) provide two different representations of the same function 
y(x), one valid for x > 1 and one valid for x < 1. Since our differential equation 
is of second order, it can only support two constants, and hence, the an and cn 

must be related. One method of determining the relations between these con
stants involves determining an expansion valid near x = 1 (an inner expansion) 
and matching it to (14.62) and (14.63) separately. An alternate method involves 
the Langer transformation and it is discussed in the next section. 

To determine an expansion valid near x = 1, we introduce a stretching trans
formation, so that the region close to x = 1 is magnified to 0(1). To this end, 
we let 

£ = ( x - 1)X" so that x = 1 + X"^ (14.64) 

where v must be greater than zero for (14.64) to be a stretching transformation. 
The value of v will be chosen later. The original derivatives become 

dx d% dx d% 

d2z.^d2z 
dx2 A d? 

and (14.10) with qx = 1 - x 3 and q2 - 0 becomes 

x 2 l ^ + x 2 [ i - ( i + x-^)3]>> = o 

or 

^ + X2~2u(- 3\-"$ - 3X- 2 "£ 2 - X " 3 "| 3 )7 » 0 

or 

0- 3 X 2 ' 3 ^ ( 1 + A"** + i *-2vt;2)y = 0 (14.65) 

As X -*• °°, the second and third terms in the parentheses tend to zero because 
v > 0 and (14.65) becomes 

9 r - 3 X 2 - 3 t y = 0 (14.66) 

As X -+«>, there are three possibilities. If *>> | , X 2 " 3 " -*• 0 and (14.66) tends to 
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(14.67) 

I f v < § ,x' i-3v -*-0 0 and (14.66) tends to 

£ y = 0 (14.68) 

If v = f , X2 " 3 " = 1 and (14.66) tends to 

djy 
(14.69) 

The last limit is the least degenerate limit and it includes the first two cases as 
special cases. Moreover, the first two cases correspond to the indefinite limits 
v > I and v < | , whereas the third case corresponds to the definite (distin
guished) limit *> = § . Therefore, the appropriate limit is the third (14.69), 
corresponding to v = |. 

Apart from the factor 3, (14.69) is the so-called Airy equation whose solu
tions are well-known. To use these solutions, we find it convenient to modify 
the transformation (14.64), so that the factor 3 disappears from the hmiting 
equation. Thus, instead of (14.64), we use 

so that (14.69) is replaced with the standard form of the Airy equation 

where b\ and b2 are arbitrary constants and Ai and Bi are the Airy functions 
of the first and second kind, respectively. This solution needs to be matched 
with the WKB solutions (14.62) and (14.63). This requires the asymptotic ex
pansions of Ai(z) and Bi(z) for large positive z (i.e., x > 1) for matching with 
(14.63) and for large negative z (i.e.,x < 1) for matching with (14.62). 

If we determine the asymptotic expansions from the differential equation 
(14.71), we find that the leading terms in y are exponentially growing and de
caying for large positive z and sinusoidally varying for large negative z. In fact, 
using the WKB approximation (14.28) and (14.29) with qx * - z , we have 

z = 3 ! / 3 ( x - 1)X2 ' 3 or x = l + 3 _ 1 / 3 X - 2 / 3 z (14.70) 

(14.71) 

The general solution of (14.71) is usually expressed as 

yi3) = b1Ai(z) + b7Bi(z) (14.72) 

- 1 / 4 (c, cos ( § z 3 / 2 ) + c2 sin ( f z 3 / 2 ) ] as z-*~ 00 

and 

y~~z-ll*[axeWin + a 2 e - ( 2 / 3 ) 2 V J ] as z - « 
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But again, we do not know the relations among the an and cn and the an and cn 

on the one hand and the bn on the other hand. To circumvent this difficulty, 
one usually represents the solutions of (14.71) in integral form, and then deter
mines the leading asymptotic terms of these integrals as we did in Example 3 
of Section 13.5. 

Using a modified Laplace transform, one can obtain the integral representa
tions of two linearly independent solutions of the Airy equations. The Airy 
functions Ai and Bi are usually defined as 

Ai(z) = - [ c o s ( ^ r 3 + zt)dt (14.73) 

1 f~ 

Bi(z) = - [exp (- ± f3 + zr) + sin U t3 + zt)) dt (14.74) 
* Jo 

The leading term in the asymptotic expansion of Ai(z) as z 0 0 is obtained in 
Section 3.5 by using the saddle-point method. Thus,lt follows from (3.239) that 

2 ^ z i / 4 a s z ^ ° ° ( 1 4 - 7 5 > 

Using the method of stationary phase, one can obtain the leading term in the 
asymptotic expansion of Ai(z) as z ->• It follows from Exercise 321 that 

Ai{z)~ * / 4 s i n [ j ( - z ) 3 / 2 + i7rl as z - * - « (14.76) 

Using Laplace's method and integration by parts to determine the leading terms 
in the integrals in (14.74), we find that (Exercise 331 ) 

^ ( 2 / 3 ) 2 3 / J 

£ / ( z ) ~ ^ 1 / 4 as z - > ~ (14.77) 

Using Laplace's method and the method of stationary phase to determine the 
leading terms in the integrals in (14.74), we find that (Exercise 3 J I ) 

Bi(z)~ r-,1 , 1 / 4cos[f ( - z ) 3 ' 2 + i ; r l as z + - ~ (14.78) 
V 7 T ( ~ Z ) 

The asymptotic expansions (14.75) through (14.78) provide the relations con
necting the c„t a„, and b„. letting z -* «* in (14.72) and using (14.75) and 
(14.77), we have 
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whereas, letting z -*• - 0 0 in (14.72) and using (14.76) and (14.78), we have 

(14.80) 

To determine the relations connecting the an and c„ in the WKB approximations 
(14.62) and (14.63), we need to match these expansions with (14.72), which is 
valid near the turning point. To match (14.62) with (14.72), we express the 
former in terms of z and let X -*•«°. In this case x < 1; hence, we express x in 
terms of 2 and let X -*•00 with z being fixed. Thus, we write 

X f V l - T 3 dr = X f V l - T 3 rfr 

which, upon putting T = 1 + 3 " 1 / 3 \~2^3t, becomes 

X f1 Vr̂P"dr = X [ ° [ - 3 ^ s X - " 3 / - 3 1 / » X - 4 ' s f a + - " l 1 ' a 3 - | ' V , A 

- f(-o1/2* = K-z) 3/ 2 

Then, 

to/" 3 - " r " « ( - z ) " « ( 1 4 8 1 ) 

z fixed 
To apply the matching condition, we need to expressy® in (14.72) in terms of 
x for x < 1 and take the limit as X -*•00 with x being fixed. This process is the 
same as taking the limit of y^ as z -»• - °°; the result is (14.80). Equating (14.81) 
and (14.80) according to the matching principle, we obtain 

nWr1** {d cos [ | ( - z ) 3 / 2 ] + c 2 sin [^(-zf2)} 

= bx sin [ | (-z)3'2 + J TT] + o 2 cos [§ ( - z ) 3 ' 2 + i T T ] 

Using trigonometric identities for the sum of two angles and equating the coeffi
cients of cos [ | ( - z ) 2 ' 3 ] and sin [§ (-z)^3 ] on both sides, we obtain 

c, = 3ll**-xl2Vxl*[bx sin $ ir + * 2 cos 1 TT] 
(14.82) 

c 2 = 3ll6r1/2\-l'6[bl cos i ir - *2 sin ± irj 
To match (14.63) with (14.72), we express x in (14.63) in terms of z and let 

X -»-oo with z being fixed but positive to correspond to x > 1. To this end, we 
write 
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X V T 3 - 1 dy — X V r 3 - 1 dr 

which, upon putting r m 1 + 3 '^3 X~2 / 3/, becomes 

x rv? r r TjT = x [* p ^ x - ^ z + s ' / ' x " 4 ' 3 . - 4 / 3 , 2 + 1/23-1/3 x - 2/3 tf/ 

Then, it follows from (14.63) that 

lim = 3 - 1 / 6 X 1 / 6 z " 1 / 4 [ f l 1 e ( 2 / 3 > r + fl2e , - (2/3)z 3 / l 

(14.83) 

z fixed 

Next, we need to express z in (14.72) in terms of x and take the limit as X 0 0 

with x being fixed but larger than 1. This is equivalent to taking the limit of 
as z -* ~ . The result is given by (14.79). Equating (14.79) and (14.83) ac

cording to the matching principle, we obtain 

3 - l / 6 X l / 6 „ l / 2 [ f l i C ( 2 / 3 ) z V > + t f a t f-W3>*"*] = L b i e - ( m z 3 » +a a eW9>«'" 

which, upon equating the coefficients of each of the exponentials on both sides, 
leads to 

In summary, the solution to our problem is given by the three separate ex
pansions (14.62) valid for x < 1 , (14.63) valid for x > 1, and (14.72) valid in the 
neighborhood of x - 1. These expansions were matched using the asymptotic 
developments of the integral representations of the Airy functions. This match
ing produced the relations (14.82) and (14.84) connecting the coefficients an, 
b„, and cn in the three expansions. One can form a composite expansion as in 
Chapter 12 to provide a single uniformly valid expansion. However, the present 
procedure is clumsy and one can use alternatively the Langer transformation to 
produce a single expansion in terms of the Airy functions that is valid every
where including the neighborhood of the turning point. This method is dis
cussed next. 

14.6. The Langer Transformation 

The gist of Langer's transformation is to transform the dependent and inde
pendent variables as in (14.34) and to choose <f> and \p so that the dominant 
part of the transformed equation has the simplest possible form and, at the same 
time, its solutions have oualttativelv the same behavior as the solutions o f the 

j , = 3 1 ' « X - " ' V , ' a * a at = \ U ^ X - ^ i r " 1 ^ , (14.84) 
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original equation. For example, when qx > 0 everywhere in the interval of inter
est, the solutions of the original equation (14.10) are oscillatory, and hence, 4> 
and \t must be chosen so that the dominant part of the transformed equation is 

dz 
a + v = 0 (14.85a) 

which is the simplest possible equation with oscillatory solutions. When qx < 0 
everywhere in the interval of interest, one of the solutions of the original equa
tion (14.10) grows exponentially with x , whereas the other decays exponentially 
with x. Hence, <p and \p must be chosen so that the dominant part of the trans
formed equation is 

dz 
2 - v = 0 (14.85b) 

which is the simplest possible equation with exponentially growing and decaying 
solutions. However, when qx changes sign once in the interval of interest, such as 
the case 1 - x 3 discussed in the preceding section, the solutions of the original 
equation (14.10) are oscillatory forx < 1 and exponentially growing and decay
ing for x > 1. Hence, 0 and \fr must be chosen so that the dominant part of the 
transformed equation has solutions whose behavior changes from oscillatory to 
exponentially growing and decaying at a given point. The simplest possible equa
tion with these properties is the Airy equation 

2-zv = 0 (14.86) 
dz 

discussed in the preceding section. When z>0, the solutions of (14.86) are 
growing and decaying with z, whereas when z < 0 its solutions are oscillatory. 

The above discussion provides an explanation of the breakdown of the WKB 
approximation or Liouville-Green transformation. In Sections 14.1 and 14.2, we 
insisted on representing the solutions of (14.10) in terms of either the elemen
tary circular functions or the elementary exponential functions. Since neither 
of these elementary functions represents the solutions of turning-point prob
lems, the WKB approximations must fail in regions containing the turning 
points. A uniformly valid expansion for all x must be expressed in terms of 
nonelementary functions that have the same qualitative behavior as the solutions 
of the original equation. 

Alternatively, the breakdown of the WKB approximation in the neighborhood 
of a turning point may be explained by the fact that the transformation (14.34) 
is singular at a turning point. According to the Liouville-Green transformation, 
&a\/q\~. Since qx vanishes at a turning point, \}/ also vanishes there. Conse
quently, (14.35) ceases to be valid near a turning point because we are dividing 
by a zero. Thus, to obtain a uniformly valid expansion, we have to insist on the 
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transformation being regular everywhere in the interval of interest. Hence 4/ 
must be regular and have no zeros in the interval of interest. Then, it follows 
from (14.40) that 0' must be regular and have no zeros in the interval of interest. 
Consequently, we set 

X 2 <? ,=0 ' 2 f ( z ) (14.87) 

so that (14.41) becomes 

dz 
2+$(z)v = -6v (14.88) 

and choose the simplest possible function f ( z ) that yields a nonsingular trans
formation. In order that 0' be regular and have no zeros in the interval of inter
est, f ( z ) must have the same number, type, and order of singularities and zeros 
as? ! . 

For example, if qi(x) is regular and has only a simple zero (simple turning 
point) such as 1 - JC3 , then f ( z ) must be chosen to be regular and have only a 
simple zero. The simplest possible function that satisfies these requirements is 
f ( z ) = z . If qx(x) is regular and has only a double zero at a point in the interval 
of interest (i.e., turning point of order 2) , f ( z ) must be chosen to be regular and 
have only a double zero. The simplest possible function satisfying these require
ments is f ( z ) =z2. If qx(x) is regular and has only a zero of order n (i.e., turning 
point of order « ) , f ( z ) must be chosen to be z " . If q\(x) has two zeros a t * =a 
and b, where o > a, oforder m and n, then one puts 

f ( z ) = z " I ( l - z ) ' * 

A third explanation of the breakdown of the WKB approximation and the 
Liouville-Green transformation is as follows. The term bv in (14.45) is small 
compared with the other terms only away from a turning point. At a turning 
point, 5 is singular and hence 

d2v 
^ ± v - 0 

is not the dominant part of the transformed equation, as we have assumed. In 
the example discussed in the preceding section, qx = 1 - JC3 SO that 

4>=0[\i/2(x- 1 ) , / 4 ] and <p'2 = 0[\\x - 1)] as x^l and X - ~ 

according to (14.43) and (14.44). Then, it follows from (14.42) that 

r 1 
x * 1 and 

Hence, 6 is small compared with 1 as X 0 0 only when x is away from 1, that is 
the turning point. Thus, to ensure the uniformity of the resulting expansion, one 
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(14.90) 

It follows from (14.89) that 

and hence, 

*=\1'24>~1,\-<7i)1/* (14.91) 

according to (14.40). 
As before, the general solution of (14.86) can be expressed in terms of the 

Airy functions as 

v(z) = €i Ai(z) + c2Bi(z) (14.92) 

Substituting (14.91) and (14.92) into (14.35) yields 

3 > ~ * l / 4 ( - < 7 i ) ~ 1 / 4 [ciAi{z) + c2Bi(z)] (14.93) 

where the factor A " 1 ' 2 has been absorbed into the constants of integration cx 

and c2. 

inspects the neglected terms in the transformed equation to make sure that they 
are small compared with the kept terms. 

The above discussion shows that, in the case of a simple turning point (i.e.,qx 

ha* only a dimple /ore in the Intcrvul of interest), f ( z ) must bo chosen to be regu
lar and have only a simple zero. The simplest possible choice is J" • ±z. Here, we 
use f = - z so that the dominant equation will be the standard Airy equation 
(14.86). Thus, it follows from (14.87) that 

W ' 2 = - \ 2 < 7 , (14.89) 

because z = 0 according to (14.34). To solve (14.89), we first take the square 
root of both sides and obtain 

which, upon separation of variables, becomes 

0 I / 2 dip^fkyZ-q^dx 

Integrating once, we have 

§ 0 3 ' 2 = ±A J y/Iql(j)dr 

where T is a dummy variable of integration. It is convenient to use the location 
of the turning point, say x =/i, as one of the limits of integration. Then, one 
writes 
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Next, we check the regularity of the transformation and the order of magni
tude of the neglected term 5 in the transformed equation (14.41). A s x - * u , 
qt - 0(x - a ) because a is assumed to be a simple turning point. Then, it follows 
from (14.90) that 

| 0 3 ' 2 -> ±X f [- q\(u)(r - " ) + " • • ] 1 / 2 dr * ±\V^qW) f 0" - " ) , / 2 dr 

= ± | A N / r ^ ( > ) ( x - a ) 3 / 2 

Hence, 

0 = 0 [ X 2 / 3 ( * - j u ) ] 

and hence 

0 ' - 0 ( X 2 / 3 ) as x~ *u and A 

Then, 

i/z = v / 0 7 = 0(\1/3) as x - * u and X-* ° ° 

proving that the transformation is regular everywhere including the turning 
point. Substituting the above estimates for 4> and in (14.42), we find that 6 = 
0 ( X ~ 4 ' 3 ) for all values of x , making it small compared with the kept terms in 
(14.86). Therefore, the single expansion (14.93) with z given by (14.90) is valid 
everywhere including the turning point. 

14.7. Eigenvalue Problems with Turning Points 

In this section, we apply the results of the preceding section to two eigenvalue 
problems. First, we consider the problem 

y + X 2 ( l ~x3)y=0 (14.94) 

y(0) = 0 and y-*0 as x - * ° ° (14.95) 

which is a prototype of problems that arise in quantum mechanics. Here, qy = 
1 - x 3 and (14.90) becomes 

f z 3 / 2 = I 0 3 / 2 = x J V ^ T ^ r (14.96) 

where the positive sign was used so that z is positive when x > 1. Hence, as 
x «x>> z -> 001 a n d (14.93) tends to 

\/ir 

according to (14.75) and (14.77). Since exp [ | z 3 / 2 l tends to infinity much 
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| [ z ( 0 ) ] 3 / 2 

so that 

= X f V T 3 - 1 dr = - iX f V l - T 3 dr 
J\ •'o 

z (0 ) = - X2/3 £ § £ V l - r 3 rfrj (14.99) 

Hence, z (0 ) -> - °° as X -> 0 0 and 

^ [ z ( o ) i ~ ^ p ^ r s i n ft [-^(o)] 3 / 2 + i ^ } 04.100) 

according to (14.76). Using (14.99) and (14.100) in (14.98), we have 

sm |x V l - r3 dr + J rrj = 0 

or 

• ' 0 
X V l - r dT+ % n=nir « = 0 ,1 ,2 , 

'o 

which yields 

X„ - {ft - (14.101) 

Therefore, the eigenfunctions are given by (14.97) with z defined by (14.96) and 
the eigenvalues are defined by (14.101). Table 14-3 compares the approximate 
expression (14.101) for the eigenvalues with those obtained by a combination 

faster than (JC3 - 1 ) " , / 4 tends to zero as x -*• °°, the boundedness condition in 
(14.95) demands that c 2 * 0. Hence, (14.93) becomes 

y~cxzl'\x* - iylf*Ai(z) (14.97) 

Imposing the boundary condition^(0) = 0, we have 

Cl[z(0)yiUi[z(0)) = 0 

Hence, 

^/[z (0 ) ] = 0 (14.98) 

Since z is a function of X, the roots of (14.98) provide the desired eigenvalues. 
It follows from (14.96) that 
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TABLE 14-3. Comparison of Perturbationally and Numerically 
Calculated Eigenvalues 

Eigenvalue Number 1 2 3 4 
Perturbation Result 2.892 6.535 10.27 14.00 
Numerical Result 2.807 6.540 10.27 14.00 

of a numerical integration technique and a Newton-Raphson iteration technique. 
The agreement is very good, even for the lowest eigenvalue, which is about 
2.807, a not very large number. The error in the first eigenvalue is 3%, whereas 
that in the second eigenvalue is 0.08%. The third eigenvalue is correct to four sig
nificant figures. 

As a second example, we consider the problem 

/ ' + X 2 ( l - j c 2 ) . y = 0 (14.102) 

7 ( 0 ) = 0 y(l) = 0 (14.103) 

which arises from the problem of heat transfer in a two-dimensional duct carry
ing a fully developed laminar flow. In this case, qt = 1 - x2 and (14.102) has 
two turning points, one at JC = 1 and the other at x = - 1 . However, there is only 
one turning point, namely x = 1, within the interval [0 ,1 ] of interest. Since the 
interval of interest is finite, it is more convenient to express the solution in terms 
of the Bessel functions rather than the Airy functions. 

In this case, qx = 1 - x2 and we put 

X 2 ( 1 - J C 2 ) = 0'2</> (14.104) 

so that the dominant part of the transformed equation becomes 

d2v 
- T + zv = 0 (14.105) 
dz 

The solution of (14.104) is taken as 

2 z 3/2 = 2 0 3 / 2 = _ X j ^ VTT72dT = x J VT^dT^XH (14.106) 

where the negative sign is taken so that z will be positive in [ 0 , 1 ] . The general 
solution of (14.105) can be expressed in terms of Bessel's functions of order ^ as 
in Exercise 14.3. The result is 

u = ' v T [ c l y „ 1 / , ( § z 3 / 2 ) + c V . / 3 ( } ^ / J ) ] (14.107) 

It follows from (14.104) that 

^ X ^ V T ^ 2 " 
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and hence, 

xp = X 1 ' V 1 / 4 ( l - x2?14 (14.108) 

according to (14.40). Substituting (14.107) and (14.108) into (14.35) and using 
(14.106), we obtain 

y ~H*\\ - x a r 1 / 4 [ c 1 7 . 1 / , ( X ^ ) + c a J 1 / s ( X ^ ) ] (14.109) 

To impose the condition ,y (1 ) = 0, we need the limit of (14.109) as x -*• 1. To 
this end, we note that as x -*• 1 

//= f V l - T2 dT-+y/2 f ( l - T ) 1 / 3 J T = | v / f ( l - x ) 3 / 2 

•Oc ^x 

Moreover, it follows from Exercise 13.20 that 

/_ 1 / 3 =C> (//" 1 / 3 ) and Ji/3=0(Hi'3) as H-+0 

Hence, 

J.m=0(l-xyll2 and J1/3 = 0(1 - x)1'2 as x-+l 

Consequently, 

y = 0 { ( 1 - x ) 3 ' 4 ( l - X)" 1 / 4 [ c i ( l - x ) " I / 2 + c2(\ - x)1'2)} 

or 

y=c10(l) + c20(l -x) as x - M 

Hence, the conditional) = 0 demands that c, = 0, and (14.109) becomes 

y~ctHxl\\ - x2yll4Jl/3(\H) (14.110) 

Imposing the condition y (0) = 0 yields the eigenvalues X„ where X„ is a root of 

L Jq 
Jl/3 X I V l - T2 dT = 0 

or 

A / 3 ( * * X ) = 0 (14.111) 

Since X is large, the argument of the Bessel function is large and 

^1/3(2) ~ cos (z - ^ *r) as z -> 0 0 

according to Exercise 13.20. Then, in place of (14.111), we have 

I n\~ f-2 7T = ( « + \)it n=0,1,2,- • 
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T A B L E 14-4. Comparison of Perturbationally and Numerically 
Calculated Eigenvalues 

Eigenvalue Number 1 2 3 4 5 6 
Perturbation Result 3.6667 7.6667 11.6667 15.6667 19.6667 23.6667 
Numerical Result 3.6723 7.6688 11.6679 15.6675 19.6673 23.6672 
Error (%) 0.152 0.027 0.010 0.005 0.003 0.002 

Therefore, the eigenfunctions are given by (14 .110) , whereas the eigenvalues 

are defined by 

X„=4(/r + f 2 ) (14.112) 

Table 14-4 compares the approximate eigenvalues with those obtained by a 

combination o f a numerical integration technique and a Newton-Raphson iter

ation technique. The agreement is excellent even for the lowest eigenvalue, 

which is about 3.6723, a not very large number. As expected, the accuracy o f 

the approximate solution increases rapidly as the eigenvalue increases. In fact, 

the fifth approximate eigenvalue is correct t o five significant figures. 

Exercises 

14.1. Consider Bessel's equation of order j 

x2y" + xy'+ (x2 - ± ) v = 0 

Introduce a transformation to eliminate the first derivative and obtain 

u" + u = 0 

Then, show that 

Jxjiix) = J C ~ 1 ' 2 ( C 1 sin x + c 2 cos x) 

14.2. Consider the differential equation 

x2t"+x$' + (x2-v2)S=0 

governing the cylindrical function f „ ( x ) . Let x = yz^ and f „ = za~^vu(z) so that 

Show that 

dx 

dz z ' - g 

dx~ 70 

dz 

dz_ 

dx 
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dx2 [ dz2 

+ (<*- Bv)(a- Bv- l)za-0v-2u 

r, du 

dz 

i du 

dz 

-

y2B2 

0- /5 ) 
u y2B2 

Then, show that u satisfies the differential equation 

z 2 fLi£+ ( 2 a - 2Bv+ l ) z — + [B2y2z2fi + a ( a - 2v0)J K = 0 
dz"* dz 

and hence, u can be expressed in terms of cylindrical functions as above. 

14.3. Consider the Airy equation 

dz' 
• + zu = 0 

Use the results of the preceding exercise to express the general solution of this 
equation as 

u = VT [ c , J _ 1 / 3 ( | z 3 / 2 ) + c271/3(f z 3 / 2 ) ] 

Hint: Rewrite equation as 

z 2 — T + Z 3 M = 0 
dz 2 

Compare this equation with that in the preceding exercise and put 

2a- 2vB + 1 = 0 B2y2 = 1 2/3 = 3 a ( a - 2 » l 3 ) = 0 
14.4. Use the results of Exercise 14.2 to show that the general solution of 

dy 

dz' 
+ z"u = 0 

U = yfz 

where v= (n + 2 ) " 1 . 

14.5. Consider the problem 

€2y" + (x2 + 2x + 2)y = 0 0 < e « 1 

7 (0 ) = 0 7 (1 ) = 0 

Show that 



14.6. Show that the large eigenvalues of 

V„ = mt I \ff{x) dx 
Jo 

14.7. Show that the large eigenvalues of 

u" + \2f(x)u = 0 f(x)>0 

u(0) = 0 u ' ( l ) = 0 

are given by 

- \ „ = (/j + i)7r ĵJf Vroodxj 

14.8. Consider the problem 

y" + \2x2y = 0 

y ( l ) = 0 y (2 ) = 0 

Show that 

K = \™ 

14.9. Show that the large eigenvalues of 

u" + A2/O)w = 0 / ( x ) > 0 

u\a) = 0 u(b) = 0 b>a 
are given by 

.b -i-i 

A „ = ( " + \)* j£ v70Orfxj 

14.10. Consider the problem 

y" + A 3 ( l - x2)y - 0 

/ ( 0 ) « 0 7 ( D - 0 

Show that the eigenvalues are given by 

X , , = 4 ( n + f 2 ) 

u" + \2f(x)u = 0 / O ) > 0 

H ( 0 ) = 0 u(l) = 0 

are given by 

1-1 
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L^o J 
14.13. Consider the problem in the preceding exercise but with the boundary 
conditions 

/ ( 0 ) = 7 ( D = 0 

Show that 

14.14. Consider the equation 

(1 - x2)2y = 0 

Show that, as X -* °°, 

y~Hi,2(\ - x 2 r 1 / 2 [ c 1 y 1 / 4 ( X / / ) + c 2 /. 1 / 4 (X//) l 

for JC > - 1 where 

14.15. Consider th e equation 

/ + X2<7(JCXK = 0 

where q(n) = q\n) = 0 but q"(n) # 0. Show that, as X - * ° ° , 

y ~ V I / 4 ( c , / 1 / 4 ( X / / ) + c 2 / _ 1 / 4 ( X / / ) J 

where 

14.11. Apply the W K B method directly to 

x y " + / + X 2 x ( l - x2)y = 0 X » l 

Indicate the validity o f the resulting approximation. 

14.12. Consider the problem 

v" + X*(l - JC 2 )/(JC)V = 0 

y ( 0 ) = 0 y ( l ) = 0 

where f(x)ssf(-x) > 0 in [ 0 , 11. This problem describes heat transfer in a two-
dimensional duct carrying fully developed turbulent f low. Show that 
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14.16. Consider 

ey" + (2x+ l ) / + 2 j » * 0 0 < e « l 

Introduce a transformation to eliminate the middle term and then apply the 
WKB approximation to the resulting equation. 
14.17. Consider 

e/ ' + (2x + 1)>-' + = 0 for 0 < e « l 

Seek a solution in the form y ~ exp [e~1G(x,€)] and deterrnine two terms in 
the expansion of G. 



CHAPTER 15 

Solvability Conditions 

In applying perturbation methods such as the method of multiple scales, one 
obtains problems that need to be solved in succession. Usually the first-order 
problem is homogeneous, whereas the higher-order problems are linear and 
inhomogeneous. To determine the dependence on the slow scales, one investi
gates the higher-order problems and imposes conditions that make the expansion 
uniform. For simple nonlinear vibration problems, the above process leads us 
to the elimination of secular and small-divisor terms. When we were dealing with 
only one-degree-of-freedom systems, it was easy for us to determine the condi
tions for the elimination of the secular and small-divisor terms. All we had to do 
was to set each of the coefficients of the terms that produce secular terms equal 
to zero. However, for mutidegree-of-freedom systems where the governing equa
tions are coupled, eliminating the terms that lead to secular terms is a little bit 
more involved. This problem and its application to two-degree-of-freedom 
systems constitutes the first part of this chapter. 

In other problems, the nonuniformity in the expansion may manifest itself 
in our inability to satisfy all the boundary conditions, leading to inconsistencies. 
The inconsistency is eliminated by imposing certain conditions, which are referred 
to as solvability or consistency or integrability or compatibility conditions. 
These conditions are derived for the case of second-order inhomogeneous 
differential equations with various boundary conditions. The results are then 
applied to two simple eigenvalue problems, waves in ducts with sinusoidal walls 
and vibrations of near circular membranes. In Sections 15-10 and 15-11, the 
solvability conditions are derived for the case of fourth-order inhomogeneous 
equations with various boundary conditions. The results are applied to two 
problems; one arises from the problem of stability of boundary layers and the 
other arises from the problem of vibrations of near annular plates. Then, in 
Section 15-12, the theory is applied to a fourth-order degenerate eigenvalue 
problem. A differential system of equations is treated in Section 15-13, general 
systems of first-order differential equations are treated in Section 15-14, and a 
differential system with interfacial boundary conditions is treated in Section 

388 
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15-15. Integral equations are treated in Section 15-16, and partial-differential 
equations are treated in Section 15-17. 

15.1. Algebraic Equations 

Let us consider the system of two algebraic equations 

It is clear that this system of equations will not have a solution unless b2 = 2bx. 
For multiplying the first equation by 2, one obtains 

Comparing (15.2) with (153) , we conclude that b2 -2bx if (15.1) and (15.2) 
are to be consistent. \ib2 ^2bx, (15.1) and (15.2) are contradictory, and hence, 
they do not possess a solution. However, when b2 = 2bx, (15.1) and (15.2)are 
redundant and only one of them is needed. Then,-one can solve say f o rx 2 and 
obtain 

showing that there are an mfinite number of possible solutions. 
If we set the b„ = 0 in (15.1) and (15.2), we find that the homogeneous 

equations 

xx - x2 = 0 

2*i - 2x 2 = 0 

have nontrivial solutions consisting of x2 ~xx. 
Let us modify the system of equations so that the homogeneous equations do 

not have nontrivial solutions and take as an example 

x j - x2 = b i 

2x, - 2x2-b2 

(15.1) 

(152 ) 

2x, - 2x 2 = 26 (153) 

x2 = xx - bx (15.4) 

2*i + 2x 2 = b2 

Multiplying (15.5) by 2 gives 

2 *1 - 2 *2 = 26] 

Adding (15.6) and (15.7) yields 

4x, =fc2 + 2b y 

whereas subtracting (15.7) from (15.6) yields 

4x 2 =b2 - 2bx 

xx - x2 - bx (15.5) 

(15.6) 

(15.7) 
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Hence, the solution of (15.5) and (15.6) is 

*> -i(*a + 2 * , ) x2~\(b2-2bx) 

which exists for all values of bx and b2 • In this case, the homogeneous equations 
(15.5) and (15.6) are 

X i - x 2 = 0 

2xj + 2x a * 0 

which have only the trivial solution. The system (15.1) and (15.2) requires a 
solvability condition on the constants bx and b2 for solutions to exist and the 
homogeneous system admits a nontrivial solution. However, the system (15.5) 
and (15.6) does not require a solvability condition on the constants bx and b2 

and the homogeneous system admits only the trivial solution. 
Next, let us consider the third-order system 

x , + 2x 2 - 3x 3 = bx (15.8) 

-2x , + x a + x 3 =b2 (15.9) 

3x, +x2 - 4x3 ~b3 (15.10) 

Adding (15.9) and (15.10) yields 

x , + 2x a - 3x 3 = b2 +b3 (15.11) 

Comparing (15.8) and (15.11), we conclude that they are consistent only when 

b2 + b3 - bx 

which is the solvability condition. Then, (15.8) through (15.10) are redundant 
and only two of them are needed. Taking (15.8) and {IS9), we can solve for xx 

and x2 in terms of x 3 . The result is 

* i = * 3 + ~ 2b2) x2 =x3 + \(2bx +b2) (15.12) 

which yields an infinite number of possible solutions. Substituting (15.12) into 
(15.10) shows that bx - b2= b3, which is the above derived solvability condi
tion. In this case, the homogeneous equations (15.8) through (15.10) have the 
nontrivial solutions x , = x 2 = x 3 . 

The preceding discussion indicates that, when the homogeneous equations 
have a nontrivial solution, the inhomogeneous equations have a solution if and 
only if the inhomogeneous parts satisfy a solvability condition. Next, we illustrate 
this for the general system of algebraic equations 

Ax = b (15.13) 

where A is an Af X A* matrix and x and b are Af X 1 column vectors. This system 
has a unique solution for all b's if and only if the homoeeneous svstem 
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Ax = 0 05.14) 

has only the trivial solution. If the homogeneous system has a nontrivial solution, 
then the inhomogeneous system will not have a solution unless the components 
of b satisfy certain solvability conditions. These solvability conditions can be 
determined by the process of elimination. Alternatively, they can be determined 
by manipulating the so-called augmented matrix B. It is defined as the NX (N + 
1) matrix consisting of inserting bx, b2, b3,..., bN as a new column into the 
so-called coefficient matrix yl. Thus, if 

then, 

an aX2 

A = 
a22 a2N 

aNN 

an al2 

B = 
a7l a22 a2N 

aN2 

(15.15) 

by 

b2 

bN 

(15.16) 

The solvability condition can be stated as follows: A set of linear algebraic 
equations possesses a solution if and only if the rank of the augmented matrix 
B is equal to the rank of the coefficient matrix A. 

We note that the homogeneous system (15.14) has a nontrivial solution if 
and only if the determinant of the coefficient matrix vanishes, that is, 

L4l = 0 

Then, the rank of A is less than N, and hence, the rank of B is less than N. 
Consequently, the determinant of any N X Nmatrix formed from B by eliminat
ing one of the columns must be zero. This condition, for example, 

aX2 * 1 3 by 
a22 a23 °2N b2 

<*N2 aNN bN 

= 0 (15.17) 

yields a solvability condition. This solvability condition can be interpreted in the 
following alternate way. If l>ll ^ 0, one can use Cramer's rule to solve for xx, 
x2,..., xN. For example, 

x, = 

bi 012 A l 3 

b2 
a22 a2N 

bj>j aN2 am <*NN 
\A\ 

(15.18) 



392 SOLVABILITY CONDITIONS 

If \A\ = 0, (15.18) shows that JC, is infinite, and hence, the system of equations 
(15.13) is not solvable unless the determinant in the numerator also vanishes. In 
this case, we have a zero over zero, which is indeterminate. 

The solvability condition of (15.13) when the homogeneous system has a 
nontrivial solution can be expressed in the following alternate way. We form the 
transpose of (15.13) and multiply the result from the right with the column 
vector u, where the overbar indicates the complex conjugate and u is an N X 1 
column vector called the adjoint and defined below. The result is 

(Ax)Tu = bTu (15.19) 

where the superscript Tindicates the transpose, that is, 

al2 
T 

On a2i 

a2l a22 alN a i2 a22 aN2 

ON i aN2 aNN f IN 02N ONN_ 

b2 

bN 

bN] 

Since (Ax)T - xTAT, (15.19) can be rewritten as 

xTATu = b r u 

Hence, 

xTATu = b r u 

or 

xTA*u- bTu (15.20) 

where A* = AT is referred to as the adjoint matrix of A. The matrix A is called 
self-adjoint if A***A, that is, it is either a Hermitian matrix or a symmetric 
matrix, depending on whether A is complex or real. If the homogeneous system 
(15.13) has a nontrivial solution x, then \A\ = \A *l - 0 demands that 

/4*u*Q (15.21) 

have a nontrivial solution. 
Having defined u by (1521), we return to the inhomogeneous system (15.13), 

that is, b # 0 . Using (15.21) in (15.20), we obtain the following form for the 
solvability conditions: 

b r u = 0 (1522) 

where u is any solution of the adjoint system. In other words, the solvability 
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conditions demand that the right-hand side of (15.13) be orthogonal to every 
solution of the adjoint homogeneous problem. 

If we define the inner product of the column vectors u and v by 

(u, v) = uTv 

then, (15.19) and (15.20) can be rewritten as 

(Ax, u) = (x, A *u) = (b, u) 

Moreover, (15.22) can be rewritten as 

(b ,u) = 0 

(15.23) 

(15.24a) 

(1524b) 

Although we have only shown necessity, (1524b) is a sufficient condition for 
(15.13) to have a solution. As an example, we consider (15.8) through (15.10). 
In this case, 

A = 

1 

-2 

. 3 

' 1 

2 

-3 

-3 

1 

- 4 J 

-2 

1 

1 

3 

1 

•4J 

(1525) 

(15.26) 

and A * = AT because A is real. Then, the adjoint system is 

or 

" 1 -2 3 " - -

2 1 1 u2 = 0 (15.27) 

. -3 1 - 4 - - K 3 -

ux - 2u2 + 3 « 3 = 0 (1528a) 

2 « i + U2 + « 3 = 0 (1528b) 

-3ut + u2 - 4w3 = 0 (1528c) 

Equations (1528) have a nontrivial solution because the homogeneous system 
(15.8) through (15.10) has a nontrivial solution. Adding (1528a) to 2 times 
(15.28b), we have 

5u, + 5u3 = 0 

whereas subtracting (15'28c) from (15.28b), we have 

5M, + 5u3 = 0 

Hence, « 3 * -u , . Then, it follows from (15.28b) that u2 - -u , , and hence, the 
solution of the adjoint problem can be expressed as 
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U = C -1 
-1 

Imposing the condition that b be orthogonal to the solution of the adjoint 
homogeneous problem, we find that the solvability condition is 

in agreement with that obtained above by using elimination of variables. 
We note that the form (15.17) is convenient for our use, and consequently it is 

frequently used in this book. 
Next we apply the above results to two problems involving the vibration of 

two-degree-of-freedom gyroscopic systems. 

15.2. Nonlinear Vibrations of Two-Degree-of-Freedom Gyroscopic Systems 

We consider the free oscillations of a two-degree-of-freedom gyroscopic system 
with quadratic nonlinearities. Specifically, we consider 

for small but finite amplitudes. 
We seek a uniform expansion by using the method of multiple scales in the 

form 

where T0 = t,Tt= et, and e is a small dimensionless parameter that characterizes 
the amplitude of oscillation. Substituting (1530) into (15.29) and using (5.45), 
we obtain 

(Pi + 2eD0Dx) (euu + e 2 u 1 2 ) + (D0 + eDx) (eu21 + e2u22) 

+ 2(ew„ + e 2 M „ ) + - - - = 2(ei i l l + e 2 u 1 2 ) ( e " 2 I + e 2 u 2 2 ) + - - -

(D\ + 2eDQDx) (eu21 + e2u22) - (D0 + eD,) (euu + e2ut2) 

+ 2(eu2t + e 2 n 2 2 ) + • • • = (eu„ + e 2 u I 2 ) 2 + • • • 

Equating the coefficients of like powers of e in these equations, we have 

bi -b2 - b3 = 0 

+ w2 + 2ux - 2uxu2 

u2 - ut + 2u 2 = u] 
(1529) 

ux = €Uxt(T0, Tx) + €2u12(T0, r , ) + • • • 

u2 = eu2X(T0, Tx) + e2u22(T0, Tx) + • • • 
(1530) 

Order e 

»Su„ + £ > 0 « 2 i + 2 « n = 0 (15.31a) 
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Dlu2i ~ D0uxx + 2 « 2 , = 0 (15.31b) 

Order e 2 

Dlun + D0u22 + 2u,2 = -2DQDxuu - Dxu2X + 2uxxu2X 

(15.32) 
Dlu22 - i ? 0 " u + 2u 2 2 = -2D0Dxu2X + Dxuxx + uxx 

Equations (15.31) constitute a system of two coupled differential equations 
with constant coefficients. Hence, their solutions can be obtained by letting 

w „ = c , e , w T o « 2 » = c2etoiT> (15.33) 

Substituting (15.33)into (15.31) yields 

(2 - co2 )c, + /coc2 = 0 
(15.34) 

-/toe, + (2 - co 2 )c 2 = 0 

For a nontrivial solution, the determinant of the coefficient matrix in (1534) 
must be zero; that is, 

2 - co2 /co 

-/co 2 - co 

Hence, 

( 2 - c o 2 ) 2 - c o 2 = 0 

or 

co4 - 5co2 + 4 = 0 = (co2 - 4) (co2 - 1) 

so that co = 1 and 2, where the frequencies are defined with the positive sign. 
When co = 1, it follows from the first equation in (15 34 ) that 

cx + ic2 = 0 or c2 - icx 

When co = 2, it follows from the first equation in (1534) that 

-2cx + 2/c2 = 0 or c2 - -icx 

Therefore, the general solution of (1531) can be written as 

w„ =Ax(Tx)eiTo + Ax(Tx)e-iT° +A2(Tx)e2iT° + A2(Tx)e'2iT» 

u2t =L4,(r,)e/ ro - L 4 , ( 7 , I ) ^ " ' T ' - L 4 2 ( 7 ' 1 ) € 2 , t o + L4 2 ( 7/ 1 ) « ~ 2 , T ° 
(1535) 

As in the one-degree-of-freedom case, A x and A2 are undetennined at this level 
of approximation; they are determined at the next level of approximation by 
imposing the solvability conditions. 

Substituting (1535) into (15.32), we have 
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Dlul2 +D0u22+2un=-2iA\eiT° - 4iA2e2iT» - iA\eiT° 

+ iA 2 e2iT° + cc + 2(A x eiT* + J , e " / r » 

+ ^ 2 e 2 / r « » +l2e"2 , T»)(L4 1e / 7 'o 

- i 4 1 e - ' r « - iA2e2iT* + iA2e-2iT<) 

Olu22 -D0ul2 +2u22 =2A\eiT* - 4A2e2iT< +A\eiT° 

+ A'2e 2iT<> + cc + (A i eiT° + A i e~iT° 

+ A2e2iT° +A2e-2iT*)2 

After some algebraic manipulations and simplifications, we have 

D%ux2 + D0u22 + 2u12 = -i(3A\ + 4A2Ax)eiT° 

+ /(-3i42 +2A2)e2iT> + cc + NST (1536) 

£>3w22 " A>"i2 + 2tt22 = (3i4'i+ 2A2Ax)eiT> 

+ {-3A'2 + ̂ , ) e 2 / r ° + cc + NST (1537) 

Since the homogeneous parts of (1536) and (1537) have solutions proportional 
to exp ( ± i T 0 ) and exp ( ± 2 J T 0 ) , the inhomogeneous terms proportional to exp • 
( ± iT 0 ) and exp (±2iT 0 ) will produce secular terms in ux2 and u22. We note that 
each of (1536) and (1537) contains terms proportional to exp (±iT0) and 
exp (±2/7o), and hence it is not necessary to set the coefficient of each of these 
terms equal to zero. In fact, if we do that, we will end up with four complex 
incompatible equations governing Ax and A2. Therefore, to eliminate these 
secular terms (i.e., to determine the solvability conditions), we seek a particular 
solution free of secular terms corresponding to exp ( i T 0 ) and exp (2 iT 0 ) in the 
form 

" 1 2 =Pi(Tx)eiT° + P2e2iT* 
' (1538) 

u22=Ql(Tx)e>T>+Q2e2lT* 

Substituting (15.38) into (1536) and (1537), we have 

(Px+iQl)eiT>+(-2P2+2iQ2)e2iTo=-i(3A\ +AA2At)etT* 

+ i(-3A2+2A\)e2lT<> 

(iPx +Ql)etT"+(-2iP2 - 2Q2)e2iT° * (3A\ + 2A2Ax)elT> 

+ (-3A2+A\)e2tT* 

Equating the coefficients of each of exp ( i T 0 ) and exp (2iT 0 ) on both sides, 
we obtain 

Pi + iQi = -»'(3v4', + 4 A 2AX) (15.39a) 



PARAMETRICALLY EXCITED GYROSCOPIC SYSTEMS 397 

-iPx + Qi = 3A\ + 2A2AX (1539b) 

2P2 +2iQ2 = /(-3/l2 + Z 4 ? ) 

2iP2 - 2Q2=-3A2 +A\ 
(15.40) 

Equations (15.39) constitute a system of two inhomogeneous algebraic equations 
for Px and Qx. Their homogeneous parts have a nontrivial solution because the 
determinant of their coefficient matrix 

= 0 

Then, their solvability condition can be written either as 

1 -i(3A\ +4A2AX) 

-i 3A\ + 2A2AX 

= 0 or 
-1(3-41 + 4A2AX) 

3A\+2A2AX 

= 0 

In the two-dimensional case, the two conditions yield the same result. But for 
a higher-dimensional space, they may not. In this case, either condition yields 

' 3A\ + 2A2AX + 3A\ + 4A2AX = 0 

or 

A\ = -A2AX (15.41) 

Similarly, the determinant of the coefficient matrix of the system of equations 
(15.40) is zero, and hence they have a solution if and only if the following 
solvability condition is satisfied: 

ii:3A2+2AX)\ 

-3A2 +A2
X 

-2 

•2i 
= 0 

or 

A'2-\A\ (15.42) 

Equations (15.41) and (15.42) are the equations describing the modulation of 
A x and A2 with Tx. As in the case of one-degree-of-freedom systems,.4 x and A2 

are usually expressed in polar form and (15.41) and (15.42) are separated into 
real and imaginary parts. Once these equations are solved, the first-order solution 
is completed. We will not present these details in here and refer the reader to the 
book of Nayfeh and Mook (1979). 

15.3. Parametrically Excited Gyroscopic Systems 

We consider the parametrically excited simple linear two-degree-of-freedom 
system. Thus, we consider the solution of 
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i i i + 2 « ! + 2 € cos n r ( / , , i i i + / n M 2 ) = 0 
(15.43) 

ii 2 - ii, + 2u2 + 2e cos S~lt(f2xux + f22u2) = 0 

for tmall « . More, SI is assumed to be positive for deflnitcness. Using tlie method 
of multiple scales, we seek a uniform expansion in the form 

" i = ul0(T0, r , ) + mn(T0, T , )+ • • 
(15.44) 

" 2 = "aoCTo, Tx) + eu2X(T0, Tx) + • • 

Substituting (15.44) into (15.43), using (5.45), and expressing cos Clt as cos • 
ft To, we obtain 

(D2, + 2eD0Dx) (uxo + e « „ ) + (D0 + eDx) ( « 2 0 + eu 2 i ) 

+ 2(u, 0 + e u „ ) + 2e cos ft7,
0(/iiM,0 + / i 2 " 2 o ) +" = 0 

(Dl + 2eD0Dx) ( u 2 0 + eu 2 1 ) - (£>0 + eDx) ( u 1 0 + e « u ) 

+ 2 ( M 2 0 + ew2|) + 2ecos SlT0(f2Xux0 + / 2 2 « 2 o ) + ' " ~ 0 

Equating coefficients of like powers of e we have 

Order e° 

Dlui0 + D0u20 + 2w1 0 = 0 
(15.45) 

Z)o"2o - A>"h> + 2 « 2 o = 0 

Order e 

Dluxx +D0u2i + 2w n = ~2D0DxuX0 - Dxu20 - 2 cos SlT0(fxxux0 + / I 2 M 2 0 ) 

(15.46) 

D\u2X - D0ulx + 2 M 2 1 = -2D0Dxu20 +Dxux0 - 2 cos £lT0(f2lul0 +f22u20) 

(15.47) 

As in the preceding section, the general solution of (15.45) can be expressed as 

« io =Al(Tl)eiTo +Ax(Tx)e-tT* + A2(Tx)e*T<> + A2(Tx)e~^ 
_ _ , „ (15.48) 

" 2 o = i ^ i^ 0 " W | ' r r « - L 4 2 e 2 r r ° + L42e~2,7<> 

where /I, and >42 are to be determined from the solvability conditions at the 
next level of approximation. Substituting (15.48) into (15.46) and (15.47) yields 

# o " n +Z>oW2i +2M , I =-ZiA\eiT* - *SiA'1e'liT* +cc 

-{e*iT»+e-iaTWuAleIT* 

+fnA2e2iTn-ifX2Aie
iT' 
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" ifnA2e2lT° + cc) 

D%u2X - n o « n + 2w2, = 3A'xeiT<> - 3A2e2lT° + cc 

-(«.«"•. +e-iilTo)(f7lAie'T<> 

*hxA2e2iT> + if22Axe,T' 

~ if22A2e2iT» +cc ) 

or 

Dlun + D0u2X+2uxx =-3iA[eiT° - 3iA'2e2iT« - (fxx + ifl2)Ax 

. j e i ( 2 + ft)r0 + e / (2-n>r 0 j + c c (15.49) 

Z>8"2i - A> «n + 2 « 2 , =3A'xeiT> - 3A2e2tT° - <J2l+if22)Ax 

. [em*ayr. +et(i-ayr9] _ ^ _ i f 2 i ) A j 

. [ e«(2 + n ) r 0 + e / ( 2 -n ) r 0 j + c c ( 1 5 5 0 ) 

When Ax and J42 are constants, as in the straightforward-expansion case, the 
right-hand sides of (15.49) and (15.50) contain terms that may lead to secular or 
small-divisor terms, depending on the value of i2. Secular terms will appear in 
uxx and u2X if any of the exponents in (15.49) and (15.50) is equal to either ±1 
or ±2, because exp (±JT0) and exp (±2iT 0 ) are solutions of the homogeneous 
problem. Thus, secular terms will appear in uxx and u2 x if 

1 + ft = ±2 1 - S2 = ±2 1 + £2 = ±1 1 - £2 = ±1 

2 + £2 = ±2 2- Q = ±2 2 + Q = ±l 2 - H = ±1 

or if J2 = 0 or 1 or 2 or 3 or 4. When the equality sign is replaced with an ap
proximate sign, small-divisor rather than secular terms will appear in the solution. 
Next, we consider the case 12 3. 

To eliminate the small-divisor terms when 12 3, we first tranform them into 
secular terms by introducing the detuning parameter o defined by 

12 = 3 + eo (15.51) 

Thus, we write 

QT0 = 3T0 + eoT0 = 3T0 + oTx (15.52) 

Substituting (15 52) into (15.49) and (15.50), we have 

D\uxx +D0u2l + 2 w „ =-[3iA\ +(/*„ + / / 1 2 ) I 2 e f a r ' ] e ? , T o 

-[3iA2 + (fn-iMAiei<>T>]e2iT> 

+ terms proportional to (e*lT°, e s ' r « ) + cc (15.53) 



400 SOLVABILITY CONDITIONS 

Px + iQx = - 3 L 4 ; - ( / „ + / / 1 2 > 4 2 e t o r ' 

-iPi+Qi=3A\-(f2X+if22)A2ei<'T> 

-2P2 +2/(22 = - 3 L 4 2 - ( / „ - / / 1 2 > 4 , c / o r ' 

-2tf>2 - 2f i 2 - -3A'2 -(f2X- if22)Ale*'T* 

(1556) 

(15.57) 

Since the homogeneous equations (1556) have a nontrivial solution, the in-
homogeneous equations have a solution if and only if the following solvability 
condition is satisfied: 

i - 3 M ; - a i i + ( r « ) ] / a * * ' r ' 

-/ 3A'1-(f2l+if22)A2eioT> 

This condition can be rewritten as 

A\-\[fti - / „ + i(fu + f22)]A2elaT* (1558) 

The solvability condition for (1557) is 

- 2 -3iA'2 - (fu - ifn)A~xeiaT> 
- 2 / - 3 / T 2 - ( / 2 1 - if22)AxehT> 

which can be rewritten as 

A2 = - i t A i -fn-i(fu +/22 ) ] ^ i e f a r ' (1559) 

Equations (1558) and (1559) describe the modulation of Ax zndA2 with Tx. 
We refer the reader to the book of Nayfeh and Mook (1979) for the details of 
their analysis. 

Dlu2l - D0uxx + 2 u 2 1 = [3A\ ~(fu+ i / 2 2 M 2 e * j T « ] e ' ^ 

-[3A2+(f2X-if22)Ale*T>)e*iT' 

+ terms proportional to (e*iT*, e 5 / r ° ) + cc 

(1554) 

To determine the solvability conditions, we seek a particular solution free of 
secular terms corresponding to the terms proportional to exp (/T0) and exp • 
(2/T0) in (15.53) and (15.54) in the form 

uxx=px(Tx)eiT*+p2{Tx)e»T> 

As in the preceding section, substituting (15.55) into (15.53) and (1554) and 
equating each of the coefficients of exp (iT0) and exp (2iT 0 ) on both sides, we 
obtain 



SECOND-ORDER DIFFERENTIAL SYSTEMS 401 

1S .4. Second-Order Differential Systems 

In this section, we consider the solvability conditions for inhomogeneous lin
ear second-order differential equations subject to general inhomogeneous bound
ary conditions. Thus, we consider 

Pi(x)y" + Pi(x)y' +p0(x)y =/(x) a<x<b 

<*uy'(p)+ <*i2y(p) + <*i3y'(b) + « i 4 7 ( * ) = P i 

<*2iy'(<*) + (*22y(a) + a23y'{b) + aMy(b) = B2 

where the boundary conditions are linearly independent; that is, the matrix 

(15.60) 

(15.61) 

0=21 

Q£,2 

a 2 2 

0=13 

0=23 

a 1 4 

a 2 4 

has a rank of two, and hence, there exists at least one 2 X 2 nonsingular sub-
matrix. In other words, at least one of the determinants 

A , , = 

A 2 3 = 

0=11 a,2 an 0ti3 
A n = 

0ti3 
A 1 4 = 

<*21 * a 2 2 <*21 <*23 

<*13 0=12 0=14 
A34 = 

<*13 
A 2 4 = 

0=14 
A34 = 

a22 0=23 
A 2 4 = 

C«22 0£24 
A34 = 

0=11 

oc2l 

a 13 

0=23 

a , 4 

a 2 4 

0=14 

0=24 1 

is different from zero. The boundary conditions (15.61) are mixed ornonsepa-
rable. A boundary condition is called mixed or nonseparable if it involves the 
value of the function, its derivative, or both at both ends. 

In this section, we consider the case in which A 1 3 ^ 0 . Solving (15.61) for 
y'(a) andy' (b), we have 

y\a) = yuy(a) + y12y(b) + 5i 

y\b) = 72i^(fl) + 722JK&) + 5 2 

(15.62) 

where 

7n = -
' 23 A 

712 = 
34 

A13 A 1 3 

_ < 3 1 q 2 3 - B2al3 

_ &12 
721 = - — 

^ 1 3 

5, =' 5 , = 

722 = 

M i l " 0lO£2l 

^11 
A 1 3 

(15.63) 

^13 '13 

To motivate the discussion, we consider the simple problem 

y" + n2y ~ IT sin itx 

y(0) = Bx y(l) = B2 

In this case, the boundary conditions are separable. The homogeneous problem 

(15.64) 
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(15.65) 

has the nontrivial iolutlon ,y - s in rot. Hence, the' inhomogeneous problem 
(15.64) will not have a solution unless a solvability condition Is satisfied. To 
determine this solvability condition, we proceed to find the solution of (15.64) 
if it exists. As in Appendix B, the general solution of the equation in (15.64) 
consists of the superposition of a particular solution and the homogeneous solu
tion. The result is 

y = ct sin rot + c 2 cos roc - \ x cos roc (15.66) 

where C\ and c 2 are arbitrary constants. Imposing the boundary conditions in 
(15.64), we have 

- c 2 + ±=/3 

These equations are inconsistent and hence the original problem (15.64) does 
not have a solution unless 

which is the desired solvability condition. Then, the solution of (15.64) is 

y = Cx sin -nx + &\ cos rot - \ x cos roc (15.68) 

In general, one need not follow the above procedure to determine the solvabil
ity conditions, especially i f one is not interested in actually determining the 
solutions, as is the case in perturbation-type problems. In such cases, we use the 
concept of adjoint as follows. We multiply (15.60) by the function «(x) , which 
is called an adjoint solution and is specified later, and obtain 

Piuy" + ptuy'+ p0uy -fu (15.69) 

Integrating (15.69) term by term from x =a to x = b (i.e., the interval of interest 
where the boundary conditions are enforced) yields 

f b pb f>b /»b 

I p2uy"dx + pluy'dx+ J p0uydx=\ fudx (15.70) 

Next, we integrate by parts the integrals involving derivatives oiy to transfer the 
derivatives to w. Thus, 

>b \b rb 

p2uy" dx=p7uy' - I (p2u)'y'dx 



and 

so that 

Moreover, 
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J fb \b fb 

(p2u)'y' dx=(p2u)'y\ - I (p2u)"ydx 
a la 

f p2uy"dx = [p2uy'-(P2u)y)b
a+ [ (p2ufydx (15.71) 

f b j b fb 

pxuy'dx=pluy\ - I (pxu)'ydx (15.72) 
la *VJ 

"a 

Substituting (15.71) and (15.72) into (15.70), we have 

>b rb 
I (p*u)nydx- I (pxu)'ydx 
a •'a 

+ I Pouy dx = J / « t f j t 
• ' a • ' a 

or 

•6 

I [p2u" + (2p 2 - px)u + (p0 +p2 - p[)u]y dx 

+ ip2uy' + [ (p , - pj)ii - p2u']y}b
a ~ \ fudx (15.73) 

The equation governing the adjoint u of the homogeneous part of (15.60) is 
defined by setting the coefficient of y in the integrand of the left-hand side of 
(15.73) equal to zero. That is, 

p2u + (2p2 - px)u + (p0 +p2 - p\)u = 0 (15.74) 

which is usually called the adjoint equation of the homogeneous equation 
(15.60). To determine the boundary conditions needed to define u, we consider 
the homogeneous problem in which / = 0 and 5, = 6 2

 = 0- Then, (15.73) and 
(15.62) become 

{P2uy'+[(pi -p2)u-Piu']y}x*b ~ {Piuy' + [(Pi -p2)u-p2u']y}xaa = 0 

(15.75) 
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(15.82) 

/(«) = 7ny(a) + tny(b) ^ 

y'(b) = y2ly(a) + y22y(b) 

Substituting for y'(a) and y\b) in (15.75) and collecting the coefficients of 
y(a) and y(b), we obtain 

[TaiPjWlx-* ~ (7llP2 + Pl - P2)u\x«a +P2"'\x*a]y(<*) 

- [r12P2wL.ii- (722P2+P1 -pMx-b +P2u'\xmb)y(b) = 0 (15.77) 

We choose the adjoint boundary conditions such that the coefficients ofj>(fl) 
andy(b) in (15.77) vanish independently, that is, 

7 2 l P 2 «L -6 * (7llP2 + Pl " P2)"lx«fl + P2«'lx-« = 0 ' 

7l2p2«lx-«- (722P2+P1 - P2)"Lf«» + P2w 'Lt-6 * 0 

Therefore, the adjoint u is defined by the adjoint system consisting of (15.74) 
and the boundary conditions (15.78). 

The homogeneous differential equation (15.60) is said to be self-adjoint if it 
is the same as its adjoint (15.74). They are the same if 

2 p 2 ~ P , =P, P 2 - P i = 0 (15.79) 

or Pi -P% - In this case the homogeneous part of (15.60) is 

P2/' + P 2 / + P o J ' = 0 

or 

(P2y')' + Poy = 0 (15.80) 

Its adjoint (15.74) can be written as 

(P2"')'+Po« = 0 (15.81) 

and the boundary conditions (15.78) become 

" > ) = 7 „ u ( a ) - y2xp2(b)p2\a)u(b) 

u\b) = - yl2p2(a)p~2
 l(b)u(a) + y22u(b) 

We note that the boundary conditions on u are in general different from the 
homogeneous boundary conditions (15.76) on^ unless 

-72iP2(*)P2!(fl) = 7i2 or y2ip2(b)'-yl2p2(a) (15.83) 

With the conditions (15.79) and (15.83) being satisfied, the adjoint differential 
equation (15.81) and its boundary conditions (15.82) are identical to the origi
nal homogeneous differential equation (15.60) and its homogeneous boundary 
conditions (15.62). Such systems are called self-adjoint systems. 

http://r12P2wL.ii-
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Hence, 

or 

Therefore, 

v_^P±_Pj_ 
v p2 p2 

In v - j — d x - lnpj. 
J P2 

Pi 

We should mention that it is not always possible to transform a differential equa
tion of order higher than two into a self-adjoint equation. 

Having defined the adjoint system (15.74) and (15.78), we return to the in-
homogeneous system (15.60) and (15.62), to determine the solvability condi
tion. With u satisfying (15.74), (15.73) becomes 

[p2uy + ( p ! - p2)uy - p2u'y]XBb - \p2uy + ( p , - p'2)uy 

- P 2 " » x » « = \ fudx (15.86) 

Substituting for^'(fl) and>»'(&) from (15.62) into (15.86), we have 

*2P2u\x~b - 5,p2w|x = fl + [ 7 2 i P 2 " U = & " (inPi+Pi " P 2 ) " L « f l 

+ p 2 « ' U = f l ] V( f l )~ [ 7 l 2 P 2 " L c « f l " ( T 2 2 P 2 + P l ~ Pt)u\x*b 

+ P 2 " ' l x - b ] . v ( 6 ) 3 f Atdx (15.87) 

Since the terms in the square brackets vanish according to (15.78), (15.87) re
duces to the desired solvability condition 

If a second-order homogeneous differential equation is not self-adjoint (i.e., 
Pi ^Pt), we can always transform it into a self-adjoint equation by multi
plying it with an appropriate function v. To detennine u, we multiply the homo
geneous part of (15.60) with v and obtain 

p2vy"+Pivy'+ p0vy =0 (15.84) 

In order that (15.84) be self-adjoint, 

PiV = (p2v)' =p2v' +p'2o 
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o2p2(b)u(b)- 6lP2(a)u(a)= f f(x)u(x)dx (15.88) 
•la 

where u is a solution of the adjoint system consisting of (45.74) and (15.78). 
As • special case, let us consider the Inhomogeneous Sturin-Liouville problem 

[p(x)y]' + Q(x)y - Xr(x)y = / (* ) (15.89a) 

/ ( « ) - 7 i i j ( « ) + 7izy(W (15.89b) 

y'(b) = y2ly(a) + y22y(b) (15.89c) 

where the condition (15.83) is satisfied and r(x)>0 on [a,b]. If X is not an 
eigenvalue of the homogeneous problem (i.e., the homogeneous problem has 
only the trivial solution), the inhomogeneous problem has a unique solution for 
every continuous f(x). On the other hand, if X is an eigenvalue of the homo
geneous problem (i.e., the homogeneous problem has a nontrivial solution), the 
inhomogeneous problem does not have a solution unless 

b 

f(x)u(x)dx=0 (15.90) 

That is, f(x) is orthogonal to the eigenfunctions u(x) corresponding to the 
eigenvalue X. These results constitute the so-called Fredholm's alternative 
theorem: 

For a given value of \ either the inhomogeneous problem (J5.89) has a unique 
solution for each continuous f, or else the homogeneous problem has a non-
trivial solution. 

In the following section, we consider the general boundary conditions (15.61). 
In Sections 15.6 and 15.7, we apply the theory to two eigenvalue problems, and 
in Section 15.8 we apply the theory to sound waves in a duct with sinusoidal 
walls. In Section 15.9, we modify the present theory to treat a case with a regu
lar singular point and apply it to the vibrations of nearly circular membranes. 

15.5. General Boundary Conditions 

ADJOINT OPERATOR 
We let L be the second-order differential operator that is defined by the 

second-order differential equation (15.60), that is, 

L(y)^P2(x)£2+pi(x)~ + p0jy (15.91) 

where p2>p\, and p0 are continuous over the interval [a>b]. lfy(x) and u(x) are 
any two functions possessing two continuous derivatives over [a, b], we have 
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f uL(y)dx = f [(p2u)y" + (Piu)y'+(p0u)y] dx a<x<b (15.92) 

Ja da 

As in the preceding section, integrating (15.92) by parts to transfer the deriva
tives from y to u, we have 

J ul(y)dx = \j>2uy'-(p2u)'y + ptuy)x + [ [(p2uf - (pxu)' +p0u]y dx 

(15.93) 

We denote the operator in the integrand on the right -hand side of (15.93) by 
Z,*,that is, 

L*(u) = (p2u)"-(plU)' + p0u = Pi ~ T + ( 2 P 2 - P i ) ~ + Po + P2 - Pi 
dx dx 

(15.94) 

Then, (15.93) can be rewritten as 

f [uLW-yLWdx-ip^uy'-uyJ + fa-p'juy]* (1595) 

The operator L* is called the adjoint operator corresponding to the operator L. 
Multiplying (15.94) by y and integrating the result by parts to transfer the de
rivatives from u to y, one can easily show that L is the adjoint operator corre
sponding to the operator L*. Thus, L and L* are adjoint to each other. 

As in the preceding section, we call the differential equation 

/,* ( « ) = 0 (15.96) 

the adjoint of the differential equation 

L(y) = Q (15.97) 

and vice versa. 
If L =/,*, we say that the operator L is self-adjoint and the differential equa

tion L(y) - 0 is self-adjoint. Comparing (15.91) and (15.94), we conclude that 
L =L* if and only if 

2p2~Pi=Pi and p\ - pi = 0 

Thus, L is self-adjoint if and only if p , = p 2 . Then, 
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As in the preceding section, any second-order differential equation of the forn 
(15.97) can be put in a self-adjoint form by multiplying it by v defined in 
(15.85). 

Differentiating (15.95) with respect to x, we obtain Lagrange's identity 

uL(y) - yL*(u) = [p2(uy' - u'y) + ( p , - p'2)uy] (15.98) 

The expression in the square brackets is called the bilinear concomitant of u and 
y because, for a given y, it is linear in u whereas, for a given w, it is linear iny. 
Puttingx = b in (15.95), we obtain Green's identity 

r [iil,00 * yl*iu)) dx = [p2(uy' - u'y) + ( p , - p'2)uy]b (15.99) 

The right-hand side of (15.99) can be written as 

R - [ Pa (V - « » + (Pi " P7)uy]b
a =Pi(b)u(b)y'(b)- p2(b)u'(b)y(b) 

+ [P i t fO- P2(b)}u(b)y(b)- P2(a)u(a)y'(a) + p2(a)u'(a)y(a) 

' [PiOO- P2(a))u(a)y(a) = u£>y 6 (15.100) 

where 

"ft = 
"(«) 

. " ( * ) . 

0 pa(fl) 

~Pi(p) P 2 ( 0 ) - P i ( « ) 

0 0 

0 0 

7 ( 0 ) 

y\b) 

ly(b) 

0 0 

0 0 

0 -p2(b) 

p2(b) Px(b)-p'2{b) 

(15.101) 

We note that 

\P\={P2{a)p2{b)]2 

and hence/*is a nonsingular matrix. Substituting (15.100) into (15.99) yields 

•b 

[uL(y) - yL+(u)\ dx - uT
bPyb (15.102) 

ADJOINT HOMOGENEOUS SYSTEM 
Since the general boundary conditions (15.61) involve linear combinations of 

the components y'(a), y(a), y'(b), and y(b) of yb, we introduce a linear non-
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singular transformation from yb to Y according to 

where 

Y = 

Y = 

< * u al2 <*13 CK,4 

Y2 a = 
0£ 2 1 <*22 « 2 3 0=24 

Yi « 3 2 « 3 3 <*34 

Y* a 4 1 a 4 2 0=43 a 4 4 

(15.103) 

(15.104) 

We note that the above transformation can be accomplished in an infinite num
ber of ways, depending on the choice of (J. We already narrowed down this 
choice by requiring the first two rows in 3 to be the same as the a(j in (15.61). 
This choice left the last two rows in (2 arbitrary, except that they are linearly 
independent from each other and from the first two rows so that 1(21^0. For 
a given nonzero yb, the last two rows in (2 can be chosen to yield any desired 
nonzero values for Y3 and Y4. This observation is used later to determine the 
adjoint boundary conditions. 

Since 1(2I 0, we can invert the transformation (15.103) and obtain 

y 6 = ( 2 _ I Y 

Then, (15.102) can be rewritten as 

[uL(y)- yL*(u)] dx = u£><r1Y 

or 

[uL(y)- yL*(u)} dx = U r Y = U1Y1 + U2Y2 + U3Y3 + U4Y4 (15.105) 

where 

U r = uf/,(J-1 or \J = (a~l)TPTub (15.106) 

The bilinear form VTY in (15.105) is referred to as the canonical representation 
of the bilinear form on the right-hand side of (15.102). 

To determine the boundary conditions defining the adjoint u of y, we put 
Uy) « 0 and L*(u) » 0 in (15.105) and obtain 

'UxYy +U2 Y2 + U3Y3 + U4Y4*0 (15.107) 

It follows from (15.103) and (15.61) that the homogeneous boundary condi
tions on y are 

Yx = any'(a) + al2y(a) + a13y'(b) + a14y(b) = 0 (15.108a) 



410 SOLVABILITY CONDITIONS 

Y3 = oc2ly'(a) + a22y(a) + a23y'(b) + a24y(b) = 0 (15,108b) 

Hence, (15.107) becomes 

C, Y3 + U4 Y4 « 0 ' (15.109) 

As mentioned above, if yb 0, the last two rows in (1 can be chosen so that Y3 

and Y4 can assume any desired values other than both zero. In particular, the 
last rows in can be chosen so that Y3 - 1 and Y4 = 0, and hence, it follows 
from (15.109) that U3 = 0 . Similarly, the last two rows in Q can be chosen so 
that Y3 = 0 and Y4 - 1, and hence, it follows from (15.109) that U4 = 0. There
fore, the system adjoint to 

L(y)*0 and Y1 = Y2=0 

is 

(15.110) 

(15.111) L*(u) = 0 and c73 = t 7 4 = 0 

where U3 and U4 are related to the components u\a), u(a), u'(b), and u(b) 
of ub by (15.106). The system (15.110) is said to be self-adjoint if and only 
if L =L* and each of t73 and 174 is a linear combination of Yi(ub) and ^ ( u ^ ) ; 
in other words u(x) ay(x). 

Since the two boundary conditions (15.61) are linearly independent, at least 
one of the determinants 

A/,- = aua2f - alfa2i i¥*j 

of the 2 X 2 submatrices 

must be different from zero. Let us assume that A 1 3 0 so that we can compare 
the results with those in the preceding section. Then, we choose Y3 and Y4 such 
that the rows of Q are linearly independent. For instance, we let Y3 -y(a) and 
Y4 = -y(b) so that the matrix C? becomes 

It follows from (15.112) that Iffl = - A 1 3 # 0. Then, 

<*I1 a I 2 « 1 3 a1 4 

Ct2l a22 a23 <*24 
0 1 0 0 
0 0 0 -1 

(15.112) 

(fl-')r = -
k|3 

- « 2 3 0 a2, 0 

« I 3 0 -a„ 0 

A 23 - A 1 3 A n 0 
A 3 4 0 - A M A , 3 

(15.113) 



GENERAL BOUNDARY CONDITIONS 411 

Substituting (15.101) and (15.113) into (15.106) we have 

0 <*23P2(a) 0 aup2(b) 
0 -<*i3Pi(a) 0 -anPj(A) 

•A„p, (a) -AJtp2(a)~ A„ [pi ( f l ) -p, ( t f ) ) 0 A „p , ( 6 ) 
0 -4 , 4 p 2 ( f l ) -A„p a ( f t ) -A1 4p, ( ft ) + A „ [ p , ( * ) - p i ( 6 ) ] J 

(15.114) 

Therefore, the boundary conditions on u are 

^ 3 =P2(a)u'(a) + L 2 ( a ) - p,(<7) + ^ - p ^ a ) " ( f l ) - ~ - p a ( * M * ) - 0 
A ! 3 

(15.115a) 

tf.-Pi(*)i«'(ft) + ̂ p , ( « ) i< (<0 - [pi(*) V a ( * ) - «< ( * ) -0 
^ 1 3 I &13 J 

(15.115b) 

which are identical with (15.78) obtained in the preceding section on account 
of (15.63). 

In order that the system (15.60) and (15.61) be self-adjoint,L =L* and each 
of U3 and C/4 is a linear combination of Yx(ub) and y 2 ( u 6 ) . As discussed above, 
L=L* if and only if pi = p 2 . Then, (15.115) become 

>r \ J- ^ 2 3 / x 

u(a) + — u(a)-
H3 Ai 3 P 2 ( f l ) 

u(b) = 0 
(15.116) 

l / L , . A 3 4 p 2 ( g ) A 1 4 / . x . n 

Solving (15.61) for y'(a) and ,y'(Z?) when Bt = /32 = 0 and replacing .y with w, 
we obtain 

a 1 3 ^ 1 3 

«(&) = - —"(*)- —u(b) 
^ 1 3 ^ 1 3 

(15.117) 

Comparing (15.116) and (15.117), we conclude that they are identical if and 
only if 

p 2 ( a ) A 3 4 = p 2 ( * > ) A 1 2 (15.118) 

which is the condition (15.83) obtained in the preceding section. Therefore, the 
system is self-adjoint if and only if px = p 2 and condition (15.118) is satisfied. 



412 SOLVABILITY CONDITIONS 

SOLVABILITY CONDITION 

Having defined the adjoint system, we return to the inhomogeneous system 
(15.60) and (15.61). Using the definition (15.111) of the adjoint, we rewrite 
Green's identity (15.105) as 

•Of 

b 
uL(y)dx=Y1Ul + Y2U2 (15.119) 

But L(y) =f(x), YX=QU and Y2 = B2; therefore, it follows from (15.119) that 
the solvability condition is 

BiUx+B2U2=[ f(x)u(x)dx (15.120) 
•'a 

To compare (15.120) with the solvability condition (15.88) obtained in the 
preceding section, we use the relations of Ux and U2 to ub from (15.114), 
that is, 

U\ = 7 u(a) u(b) 
&13 ^ 1 3 

A j 3 A 1 3 

(15.121) 

Then, (15.120) becomes 

P2(b)u(b) p 2 (a )u(a ) = f(x)u(x)dx 
'13 " 1 3 

(*)«(«)- f 

which is identical with (15.88) on account of (15.63). 
Comparing the development in this section with that in the preceding section, 

we conclude that the algebra is less involved in the preceding section. Con
sequently, when one faces general boundary conditions, such as those given by 
(15.61), we recommend that one solve for two of the end values in terms of the 
other two as we did in (15.62) and then proceed as in the preceding section. 

15.6. A Simple Eigenvalue Problem 

We consider the eigenvalue problem 

/'+ [* + eg(x)]y = 0 e « l 
(15.122) 

7 (0 ) = 0 y ( * ) = 0 

where X is an eigenvalue. Since X is a function of the parameter e, we seek a 
first-order uniform expansion by using the method of strained parameters and 



A SIMPLE EIGENVALUE PROBLEM 413 

expand both X and y in powers of e as 

y V (15.123) 
X = X0 + eX, + • • • 

Substituting (15.123) into (15.122), we have 

y'o + ey" + [Xo + eX, + e^] ( > 0 + ey j ) + • • = 0 

7o(0) + ey , (0 )+ • • • = 0 y0(ir) + eyi(n) + • • • = 0 

Equating coefficients of like powers of e yields 

Order e° 

Vo + A o7o = 0 
(15.124) 

^o (0 )=yo (^ ) = 0 

Order e 

y" + X 0 7 i = -£>>o - AiJ>o (15.125) 

^ « (0 ) = 7i(7r) = 0 (15.126) 

The general solution of the differential equation in (15.124) can be written as 

y0 = Cj cos y/\~oX + c2 sin \/Xo * 

Imposing the boundary condition yo(0) - 0 leads to cx - 0. Then, imposing the 
boundary condition yoOO = 0 leads to 

c2 sin >/X^ 7r = 0 

Hence, for a nontrivial solution (i.e., c2 =fc 0 ) 

sin Vx7 = 0 or V^o" w - nir n - 1,2, • • • 

Hence, to zeroth order, the eigenfunctions are 

y0 = sinnx (15.127) 

and the eigenvalues are 

X 0 = « 2 (15.128) 

Substituting (15.127) and (15.128) into (15.125), we have 

y" + «V i * "<?(*) sin nx - X, sin nx (15.129) 

Since the homogeneous first-order problem (15.129) and (15.126) has anon-
trivial solution, the inhomogeneous problem has a solution only if a solvability 
condition is satisfied. Instead of applying the general results of the preceding 
section, we find it more instructive to derive the condition again. In (15.129), 
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Pi = 1 and Pi - 0 so that p'2 s P i and (15.118) is satisfied so that the problem 
is self-adjoint. Hence, the solution u of the adjoint problem can be taken as 
h my0 - sin nx. Multiplying (15.129) with u and integrating the result by parts 
11 um x • 0 to x m n, we obtain 

I yx{u" n2u)dx + [y\u - ylu']Z = - I [£(*) + Xi ]us innxdx 
Jo Jo 

(15.130) 

Since u = sin nx and j>i(0) = 0 and yi(ir) = 0, the left-hand side vanishes and the 
solvability condition becomes 

I g(x) sin2 nx dx + \t f sin2 nx dx = 0 
Jo Jo 

Since the second integral is \ it, 

2 f* 
- — I g(x) sin* nxdx (15.131) 

" Jo 

Substituting (15.127), (15.128), and (15.131) into (15.123), we find that to 
the first approximation 

y » sin nx + 0(e) 

*2e Cn (15.132) 
X = n2 - — I #(x) sin2 nx dx + 0(e 2 ) 

15.7. A Degenerate Eigenvalue Problem 

We consider the eigenvalue problem 

y + [ X + e / ( x ) b = 0 , e « l 

y(0)=y(i),/(0)=y'(i) 

As in the preceding section, we seek a first-order uniform expansion by expand
ing both y and A as 

*;.)-*«•«„«•••• 
X - X0 + cXi + • • • 

Substituting (15.134) into (15.133) and equating coefficients of like powers of 
e, we obtain 
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Order e° 

' • + X ^ " ° (15.135) 
MO)~yoO) y o ( 0 ) - / o ( i ) 

Order e 

^ + X o y , - ( X , + / > y o ( 1 5 1 3 6 ) 

^ i (o ) = 7 i ( i ) y i ( o ) - y , d ) 
The general solution of the equation in (15.135) can be written as 

y0 = ax cos y/\o~x + a2 sin \/Xo x 

Imposing the boundary conditions in (15.135), we have 

a, - ax cos + a2 sin V^o 

a2 - ~ax sin \ /X^ + a2 cos VXo 

or 

(cos>Ao " 1 ) « ! + s in VXo"a2 = 0 
... 151) 

-sin yXo a \ + ( c ° s V^o " 1)^2 = 0 
For a nontrivial solution, the determinant of the coefficient matrix in (15.137) 
must be zero, that is, 

(cos VXo" - l ) 2 + sin2 V^o = 0 

which for real X 0 demands that 

sin VX7 - 0 and cos >/Xo~= 1 

Hence, 

X 0 = 4 « 2 T T 2 « = 0 , 1 , 2 , - • • (15.138) 

and it follows from (15.137) that ax and a2 are arbitrary. Then, 

y0 = ax cos 2nirx + a2 sin 2nirx (15.139) 

for arbitrary ax and a2. 
Thus for every X 0 = 4n 27r2, where n>l, there are two different eigenfunc-

tions, namely cos 2nnx and sin 2rmx. Eigenvalue problems having two or more 
eigenfunctions corresponding to the same eigenvalue are called degenerate 
eigenvalue problems. The degeneracy is a result of the symmetry of the problem 
and it may be removed by the presence of an asymmetry in the problem. As 
discussed below, the term f(x)y(x) in the present example may produce such an 
asymmetry to remove the degeneracy. 
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Substituting (15.139) into the equation in (15.136) and recalling that X0 * 
4n 2 n 2 , we have 

y" + 4n2n2yx - -(Xi +/) ( f l i cos2w7rx + a a sin2«7rx) (15.140) 

Since the homogeneous problem governing yx is the same as (15.135) and since 
the latter has a nontrivial solution, the inhomogeneous problem governing;/, has 
a solution only if solvability conditions are satisfied. To determine these solv
ability conditions, we multiply (15.140) by u(x), integrate the result by parts 
from x = 0 to x = 1 to transfer the derivatives from yx to u, and obtain 

[y\u - yxu']0 + J yx(u" + An2ix2u)dx = - J u(X, +/ ) (at cos 2nnx 

+ a2 sin 2nnx) dx (15.141) 

To define the adjoint function u, we first consider the homogeneous problem, 
that is, we put Xi = 0 and / = 0. Then, the adjoint equation is 

u" + 4n27r2w = 0 (15.142) 

and (15.141) becomes 

/ i ( l ) u ( l ) - yx(l)u'(\) - y\(PM0)+yx(())u'(0) = 0 (15.143) 

But J F I ( 0 ) - ^ , ( 1 ) and/ i (0 )=/ ( l ) ;hence , (15.143) can be rewritten as 

[ u ( l ) - « ( 0 ) ] / i ( l ) - [ « ' ( 1 ) - uX0))yx(\)<*0 (15.144) 

We choose the adjoint boundary conditions such that each of the coefficients of 
>>i(l) and.Vi(1) vanishes independently, that is, 

« ( 1 ) = « ( 0 ) u ' ( l ) = w'(0) (15.145) 

Thus, the homogeneous system (15.136) is self-adjoint. Hence, 

u(x) = sin 2nnx or cos 2mx (15.146) 

Having defined the adjoint problem, we return to the inhomogeneous system. 
Using (15.142) and (15.145), we reduce Green's identity (15.141) to 

J u(x) [X, + f(x)] (a, cos 2nirx + a2 sin 2mrx) dx = 0 (15.147) 
Jo 

which yields the desired solvability conditions. We note that (15.147) should 
hold for all possible values of u(x) that satisfy the adjoint problem. In the present 
example, when n > 1, u(x) ~ sin 2nnx or cos 2nnx. Hence, the inhomogeneous 
problem governing yx has a solution only if (15.147) is satisfied when u(x) = 
sin 2nrtx or cos 2nnx. 

Putting u(x) = sin 2nnx in (15.147), we have 
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/ i 2 f l i + 0 . + / i i ) a 2 = 0 (15.148) 

whereas putting u(x) = cos 2nirx in (15.147), we have 

( A i + / « ) « i + / i 2 « a S 0 (15.149) 

where 

fn -2 I fix) sin2 2nitx dx f22 - 2 I / (x )cos 2 2n7rxdx, 
Jo Jo 

/12 - J* fix) sin 4/HTX dx 

For a nontrivial solution, the determinant of the coefficient matrix in (15.148) 
and (15.149) must be equal to zero, that is, 

O l + / l l ) ( * l + / 2 2 ) - / l 2 = 0 

or 

X? + </„ +/ 2 2)Ai +/U/~22 -fh^O 

Hence, 

X, = X(/> or X<2 ) = +/„) + i "/ 2 2 ) 2 + 4/?2] " 2 (15.150) 

Then, it follows from (15.149) that 

Al T J22 / | f , C 1 \ 

<*2= - - a \ (15.151) 
In 

Therefore, to the first approximation either 

7 ( 1 ) = cos In-ax - - L — ^ sin 2nirx + 0 ( e ) 
fn 

A< »> «4# tV - ie{/M + / 2 2 + [ ( / „ - / 2 2 ) 2 + 4/2
2 ] + 0(e2) 

(15.152) 

or 

.y*2* = cos 2w7rx sin 2nnx + 0(e) 
fn 

X<2> = 4 « V - 4 « { / n + / 2 2 - [ ( / „ - / 2 2 ) 2 +4/? 2 ] '/ 2 } + 0 ( e 2 ) 

(15.153) 

Consequently, if X(,° is different from X(,2 ) (i.e.,/*„ # / 2 2 a n d / n 0 ) , the 
degeneracy will be removed because corresponding to each eigenvalue X^* there 
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where co and kw are constants and e is a small dimensionless parameter. Except 
for the form of the boundary conditions, this problem is a prototype for electro
magnetic and elastic waves in waveguides. 

As a first step to obtaining a uniform first-order expansion, we carry out a 
straightforward expansion in the form 

We note that the boundary condition (15.156) is imposed at y = 1 + e sin /k^x, 
and hence, e appears in the argument of 0 as well as in the coefficients. Since the 
usual procedure in perturbation methods is to equate coefficients of equal 
powers of e, we will not be able to do that unless e is removed from the argu
ment. To accomplish this, we perform what is usually referred to as the transfer 
of the boundary condition. In this case, we transfer the boundary condition 
from y = 1 + e sin fc^ to y = 1 by a Taylor series expansion. We write $ y at 
y - 1 + e sin kwx in (15.156) as 

(PxjC + <f>yy + <JJ7<P = 0 

0^ = 0 at y = 0 

<py = ekw4>x cos kwx at y - 1 + e sin kwx 

(15.154) 

(15.155) 

(15.156) 

<t>s <t>o(x. y) + e0,(x, y) + • • • (15.157) 

<t>y(x, 1 + e sin k„x) 

Expanding it in a Taylor series about y = 1, we have 

<t>y(xy 1 + e sin kwx) = <i>y(x, 1) + <t>yy(xt l)e sin k^x 

+ 57*>w ( * . 1 ) g 2 s i n 2 

3 sin3 kwx + - •' 

Similarly, we expand 0 X at y - 1 + e sin kwx as 

4>x(x, 1 + 6 sin kwx) = <f>x(x, 1) + 4>xy(xt 1 )e sin kwx 

is only one eigenfunction y^m\ If A?* = x f \ the degeneracy may be removed 
at higher order. 

15.8. Acoustic Waves in a Duct with Sinusoidal Walls 

We consider the porblem of linear harmonic acoustic wave propagation in a 
two-dimensional duct (waveguide) with sinusoidally varying walls. The problem 
can be stated mathematically as 
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+ Y\ Qxyyt** 1 ) f 2 k » x 

+ ^ txyyyi** I ) * 3 sin3 kwX + • • • 

Substituting these Taylor-series expansions into (15.156), we obtain 

<f>y(x, 1) + e<t>yy(x, 1) sin fc^x = eJt w 0 x (x, 1) cos k^x + • • (15.158) 

thereby transferring the boundary condition from y = 1 + e sin fc^x to 7 = 1 
and removing e from the arguments of <py and <px. Now, we are ready to carry 
out the straightforward expansion. 

Substituting (15.157) into (15.154), (15.155), and (15.158), we have 

0Oxx + c01xx + Qoyy + ^\yy + <^2<Po + €i07<Pi + • • • = 0 

<hy(x,0) + e4>ly(x, 0 ) + - = 0 

<f>0y(x, 1) + e<f>ly(x, 1) + £(}>oyy(x, 1) sin k^x = ekw4>0x(x, 1) cos k„x + • • • 

Equating coefficients of like powers of e leads to 

Order e° 

4>0xx + 0Oyy + W 2 0O = 0 (15.159) 

<M*,0) = 0 (15.160) 

0o^ (^ , l ) = 0 (15.161) 

Order e 

+ + w 2 0 i = 0 (15.162) 

<t>iy(xi0) = 0 (15.163) 

<t>ly(x, 1) = -<t>0yy(x, 1) sin /cwx + kw<p0x(x, 1) cos fc^x (15.164) 

Since (15.159) through (15.161) have constant coefficients, they can be solved 

by separation of variables. To this end, we let 

4>o=X(x)Y(y) (15.165) 

and obtain 

X"Y + XY" + u2XY = 0 (15.166) 

X(x)Y'(0) = 0 (15.167) 

X(x)Y'(\) = 0 (15.168) 
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Dividing (15.166) by XY and rearranging, we have 

y " Y" 

" T = T + w 3 ( 1 5 1 6 9 ) 

Since the left-hand side of (15.169) is a function of x only and its right-hand 
side is a function of y only, we conclude that each side must be a constant, 
that is, 

~ = b (15.170) 

Y" 
-y + tj2=b (15.171) 

Equation (15.170) can be rewritten as 

X"+bX=0 

For propagating waves, X must be sinusoidal, and hence, b must be positive. 

Usually one puts b - k2 so that 

X = e ± i k x (15.172) 

and k is called the wavenwnber. Putting b = k2,we rewrite (15.171) as 

Y"' + (co2 - * 2 ) K = 0 

whose general solution is 

F = c, sin Vco2 - k2 y + c2 cos Vto2 - k2 y (15.173) 

Since X(x)$ 0,it follows from (15.167) and (15.168) that 

Y'(0)= r ' ( l ) = 0 (15.174) 

Imposing these conditions in (15.173), we find that cx - 0 and 

Vco2 - * 2 = nir so that k2 = co2 - n 2 7r 2 n - 0 , 1 , 2 , - - - (15.175) 

Then, 

r=cosmry (15.176) 

Substituting (15.172) and (15.176) into (15.165), we have 

0o " cos nny or e~'k»x cos my (15.177) 

where one of these solutions corresponds to a wave propagating in one direction 
and the other solution corresponds to a wave propagating in the opposite direc
tion. The solution corresponding to a given n is called the nth mode. Let us take 
the case with the positive sign. 
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Substituting (15.177) with the positive sign into (15.164), we have 

<t>iy(x, 1) = (- l ) V 7 r V * " * sin k„x + i(-\fknkweiknx cos k^x 

= (- l ) n w 2 7 r V * " x • - \ i ( e i k " x - e~ikwx) 

+ i ( - \ ) n k n k w e i k " x • \(eik™x + * - * * w * ) 

a f j e ' ^ i + + f 2 e ' * ( * n - * w > * (15.178) 

where 

f l = i ( - l ) " / ( * « * w " « V ) f2 - i ( - l ) " / ( * « * w + 1 2 * 2 ) 05.179) 
T o find the solution o f (15.162), (15.163), and (15.178) for 0,, we note that the 

boundary condition (15.178) is inhomogeneous and its form suggests that the 

variables be separated as fol lows: 

0 i = * l ( j , ) e ' < * » + * " ' ) * + * 2 0 ) e i ( f c " - * v V ) * (15.180) 

Substituting (15.180) into (15.162), (15.163), and (15.178), we have 

[«t>'; + a ? * 1 ] e , ( * " + k w ) x + [ * ; + o l * 2 ] e ' ( * » " * w ) x = 0 

$ ; ( 0 ) c / ( f c » + * h - ) x + $ 2 ( 0 ) e f ( * " " f c ^ ) x = 0 

^ ( l ) ^ * * * * * ) * + * 2 ( l ) e ' < * » i " " *w>* = f l t f ' ( * n + * w ) * 

+ f 2 e / ( * " " * w ) x 

where 

a 2 = w 2 - (*„ + kwf a\ - co2 - (*„ - fcw)2 (15.181) 

Equating the coefficients o f each o f the exponentials on both sides, we obtain 

1 1 1 (15.182) 
*'i (0) = 0 ^ ( l W i 

*2' + <x\&2 = 0 
(15.183) 

* 2 ( 0 ) = 0 * 2 ( i ) = ?2 

It fol lows from (15.182) that the general solution for ̂ t is 

3»i = c , cos axy + c2 sin axy 

Imposing the boundary conditions in (15.182), we find that 

c2 ~ 0 and c , = — 
a t smot! 

Hence, 
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c 

a 2 sin a 2 

(15.185) 

Inspection of the expansion (15.185) shows that it breaks down if sin OLX = 0(e) 
or sin a 2 - 0(e) . If either sin a, or sin a 2 - 0, the second term tends to infinity. 
When sin 0 7 = 0(e), a small-divisor term appears, making the expansion nonuni
form. Since sin 0 4 = 0 implies that <*/ = mir, m - 0 , 1 , 2 , . . . . the straightforward 
expansion breaks down when 

u2-(k„ + kw)2**m2n2 or - (kn - *„)* * m2n2 (15.186) 

according to (15.181). But' co2 - m2n2 - k^ according to (15.175); hence, 
(15.186) can be expressed as 

(kn + kw)2 k2
m or (*„ - kw)2 * k2

m 

which can be rewritten as 

kw~±kn±km (15.187) 

In other words, the straightforward expansion breaks down whenever the wave-
number of the wall undulations is approximately equal to the sum or difference 
of the wavenumbers km and kn of two propagating modes, that is, whenever a 
combination resonance exists. 

To determine an expansion valid when kw * k„ - km, we introduce a detuning 
parameter 0 according to 

kw = k„ - km + ea (15.188) 

Moreover, we use the method of multiple scales and seek the expansion in the 
form 

* l = : 

a t sin a t 

Similarly, the solution of (15.183) can be found to be 

t 2 cos ot2y 
d> = ; 

a2 sin a 2 

Therefore, 
^ m J t c o s a i y £ t ( k n + k w ) x _ U c o s a 2 7 ^ . ^ ^ j 

a t sin a 2 sin a 2 

Substituting (15.177) and (15.184) into (15.157), we obtain 

4> = cos mry e'*«* - e f ̂ L^fSiZ c«<*„+ *w>* 
[ a, sin a t 

+k£2 êi<»ll.*w),]+... 
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<p(xf 7; e ) = 0 (x o , xlt y;e) = 0 o ( x o > x „ y) + e4>x(xQ, xXf y) + • • • (15.189) 

where x 0 = x and xx = ex. Thus, 

a a a 9 2 a 2 a 2 

£"5.—ST*"" a ? " 5 5 + 2 e 5 S S T + - ( 1 5 1 9 0 ) 

Substituting (15.190) and (15.189) into (15.154), (15.155), and (15.158) and 
equating coefficients of like powers of e, we obtain 

Order e° 

a^o a2 

37 2 

^ = 0 at 7 = 0 ^ 2 = 0 at 7 = 1 

37 â  

(15.191) 

Order e 

a2*, a20, . _ „ a^p mi<m 
+ -—— + co 0i 2 - — — (15.192) 

3xo 37 ax 0 ax! 
— - = 0 at 7 = 0 (15.193) 
^7 2 sinkwx0 +kw-^-co$kwx0 at 7 = 1 (15.194) 

37 37 2 m k w X o k w b x 0 

where sin kwx and cos£wx are expressed in terms of x0, implying that kw is 
assumed to be away from zero. 

The solution of (15.191) can be obtained by separating variables as done 
above. However, instead of making 0 O contain only one mode, we make <j>0 con
tain the two interacting modes, namely the mth and nth modes, and hence, 
write 

0o cos air? + - 4 m ( x , ) cos wiry (15.195) 

where km and kn are defined by (15.175) and An and>lO T are determined by 
imposing the solvability conditions at the next level of approximation. Substitut
ing (15.195) into (15.192) and (15.194), we have 

+ %TT + w 2 0 i * -2tknA'n cos mty eiknx° - 2ikmA'm cos miry eik>nx* axg 37 2 

(15.196) 

dy 
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+ $imAmei(k'» + k»)x*+$2mAme'Xkm~kw)x' * n (15.197) 

where £,„ and $ 2 n are defined by (15.179) and f , m and f 2 m are also defined 
by (15.179) if n is replaced by m. 

To determine the solvability conditions for the first-order problem, we first 
substitute (15.188) into (15.197) to convert any small-divisor terms into secular 
terms and obtain 

by 

+ r 2 m ^ m e ' < 2 * m - * n - e o ) * 0 at 7=1 

or 

^ = t 1 ^ n e t o V < 2 * « - * m > * < > +t2nAne-(ax>eik'"x' + tlmAme*x*elk»x> 
by 

+ f im>Ue " ' a x , ^ ( 2 * m ~ * M ) * 0 at 7 = 1 (15.198) 

We note that only the terms proportional to exp (ikmxQ) and exp (iknx0) in 
(15.196) and (15.198) may lead to inconsistencies or ^compatibilities and 
solvability conditions must be imposed on them. These solvability conditions 
can be obtained by seeking a particular solution corresponding to these terms in 
the form 

<t>i = * n ( * i , 7 ) * ' * " * ' + * m ( x 1 , 7y* ' » x » (15.199) 

Substituting (15.199) into (15.196), (15.193), and (15.198) and equating the 
coefficients of exp (iknx0) and exp (tkmxQ) on both sides, we obtain 

" + n2n2&n = -2ik„A'„ cos nny 
y (15.200) 

— * = 0 at 7 = 0 - r - ^ - S W ^ e " * ' at y-l 
by by 

d24> 

— T + m2n2<t>m = -2ikmA'm cos miry 
y (15.201) 

? ^ = 0 at 7 - 0 ~^-UnAne^ at 7=1 
oy by 

where use has been made of (15.175). Thus, determining the solvability condi
tions for 0, has been transformed into determining the solvability conditions for 
* „ and <bm. 

The equation in (15.200) is self-adjoint because p2 » 1 and pt * 0. The solu
tion u of the adjoint problem can be taken as cos nny. Multiplying the equation 
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in (15.200) by u(y) and integrating the result by parts from y = 0 to y = 1 to 
transfer the derivatives from 4>„ to u, we obtain 

J* (u" + «Vu)<f>„ dy + " * n « ' j = -2/*ni4l« ^ w cos /iny 

(15.202) 

Since u = cos way, (15.202) simplifies to 

l i 

— — COS M 7 T V 

dy 
= -ihknA'n 

0 

where 

5 = 1 if * > 1 and 8 = 2 if n = 0 

Using the boundary conditions in (15.200), we have 

or 

A'H = ( - l ) n / r im^ ! o -U m e f o J t « (15.203) 

Similarly, if m & 0, the solvability condition for (15.201) can be found to be 

Am - ( - l ) m / ? 2 „ f e ^ n e - t o J C . (15.204) 

If we let 

An^ane1^ Am >*ame**>x> (15.205) 

where an, am, 7 , , and y2 are constants, then it follows from (15.204) and 
(15.205) that 

hxan = (-l)ni$xmk-n
x6-xam (15.206) 

i72*m * ( " l ) M « A I I * m « . I (15.207) 

7 2 = 7 I - o (15.208) 

Eliminating72 and am from (15.206) through (15.208) yields 

7 , ( 7 , - °) = (~ir+m(knkm&rl!;lmS2n 

or 

7? " * 7 I " i-l)"*M(kn*m*rl!;imS2n'0 

yt * ±0+ [±0* + (-iy+m(knkm8rltlm$2nV'2 (15.209) 

Hence, 
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b2<t> J_d0 1 9 2 0 
br2 + r br % 2 b62 

+ -T- + - 1 ^ + "2<P = 0 (15.215) 

0 < » at r = 0 (15216) 

0 = 0 at r= l+e/(0 ) (15.217) 

As in the preceding section, we need to transfer the boundary condition (15.217) 
from r = 1 + e/(0) to r = 1 by using a Taylor-series expansion. Thus, we rewrite 
(15.217) as 

30 
0(1,6) + e ~ (1,0)/(0) + • • • = 0 (15218) 

or 

To determine a uniform first-order expansion for 0, we use the method of 
strained parameters and expand both 0 and co as follows: 

0 = 0oM) + e 0 , M ) + ---
(15219) 

co = co0 + eco, + • • • 

Substituting (15.219) into (15.215), (15.216), and (15218) and equating 
coefficients of like powers of e, we obtain 

which when substituted into (15.205) defines the amplitudes of the two inter
acting modes. 

15.9 . Vibrations of Nearly Circular Membranes 

We consider the linear vibrations of nearly circular membranes. In dimension
less quantities, the mathematical statement of the problem is 

d2w 1 bw 1 d2w b2w n , t g „ n 
+ _ + _ = 0 (15.210) 

dr2 r br r2 bd2 bt2 

w < o o a t r = o (15.211) 

w = 0 at r = l + e/(0) (15.212) 

where 1 is the mean radius so that 

f($)dd=0 (15.213) 

o 

For time harmonic variations, we let 

w(r, 6, t) = 0(r, 0 ) cos (cof + r ) (15214) 

where co is the dimensionless frequency. Substituting (15.214) into (15210) 
through (15.212), we separate the time variations and obtain 
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920o , 1 90o . 1 9 2 0 o . 2 , _ n n s r w n 
——- + -— + ~ "TTJ " + <^o0o - 0 (15.220) 
9r2 r 9r r** 90 ' 

0 o (O ,0 )<oo (15.221) 

0o ( l ,0 ) = O (15.222) 

Order e 

9r 2 r 9r 90 z 

0 , ( 0 , 0 ) < ~ (15.224) 

05-225) 
or 

The solution of the zeroth-order problem can be obtained by separating the 
variables. Thus, we let 

0 o =/? ( r )0 (0 ) (15.226) 

in (15.220) and obtain 

R"@ + ~R'e + \ Re" + oolRe=o 
r r 

which can be rewritten as 

Hence, 

1 0 " 
£ (r2R" + rR' + r2oo2

0R) + — = 0 

~ = -B I- (r2R" + r/?' + a>lr2R) = 0 
0 R 

The solution for 0 is 

0 = c, cosV/f0+C2 sinVJ3~0 

In order that 0 , and hence, 0 O be single-valued functions, y/p7 = n where is an 
integer. Hence, 

0 = c, cos «0 + c 2 sin (15.227) 

and the equation governing R becomes 

r2R" + rR' + (oj2
0r2- n2)R=Q 

which is a Bessel's equation of order n whose general solution is 
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R = c3J„(u0r) + cA Y„(cj0r) (15.228) 

Substituting (15.226) into (15.221) and (15.222), we find that / ? ( 0 ) < ~ and 
R(l) = 0. Since Y„ -*•<*> as r-»-0 (see Section 13.3), the boundary condition 
R(0) < 0 0 demands that c 4

 s 0. Then, the boundary condition R(l) » 0 demands 
that 

/ r t ( w 0 ) = 0 (15.229) 

Hence, 

co0 = n „ m (15.230) 

where the Q.nm are the roots of Jn(£l) - 0. Therefore, 

0o ~ JniP,nmr)[c\ c o s w # + c 2 s m n & \ 

or 

0o = / n ( n n m r ) ( > I r t m e / " e +Anme-in*) (15.231) 

where the i 4 M m are complex constants. The solution for a given n and m is called 
the nm th mode and the total solution involves summation of the contributions 
for all modes. Here, we determine the effect of the deviation from a circular 
geometry on the frequency Q.nm of the nmth. mode. 

We note that, for a given frequency n „ m , there are two possible modes of os
cillation, namely 

/„ (p.nm r ) cos nd and /„ (£lnm r) sin nd 

Consequently, we speak of the circular membrane as a degenerate system be
cause there are more than one eigenfunction (mode shape) corresponding to a 
given eigenvalue (frequency). The degeneracy is a result of the symmetry and it 
can be removed by introducing asymmetries as shown below. 

Substituting (15.231) into (15.223) and (15.225) and setting co0 = ^ , t m , we 
have 

^ - + ~ + ^ - ^ - + " nm0 i =-2Q.nmUiJn{tonmr){Anmein9 + Anme-in9) 

(15.232) 

0, (1,6) = - anmJn(nnm)f(e)[Ann,eine + Anme"n9} (15.233) 

To proceed further, we expand f(6) in a Fourier aeriea al 

/ ( * ) " Z U e * 9 / ^ r f f(e)e-iqe dd (15.234) 

where f0 -0 on account of (15.213). We separate the $ variations from 0, by 
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expanding it in a Fourier series as 

*i*Z*k(r)eM (15.235) 

Substituting (15.235) into (15.232), we have 

z[»:+7*i + ( n j « - J ) * k ] e ' * i 

= - 2anmcoxJn(nnmr)[Anmeine + Anme-in6 ] 

which, upon multiplying by exp (-isd) and integrating from 0 = 0 to 8 = 2ir, 
yields 

K + 7&n + ("«m " J?} *n = '2^„m^lAnmJn^lnmr) (15.236) 

* ; + 7*; + ( n M m - ^ ) * , = 0 for s*n (15.237) 

Substituting (15.234) and (15.235) into (15.233), we have 

which, upon multiplying by e x p ( - « 0 ) and integrating from 0 = 0 to 0 =2 T T , 
yields 

("nm ) \A nm fs - «+A,m/i + „ ] (15.238) 

Substituting(15.235) into (15.224), we conclude that 

* , ( 0 ) < ~ (15.239) 

When s^±n, one can uniquely solve (15.237) through (15.239) for be
cause the homogeneous problem has only the trivial solution. Since we are stop
ping at this order, we need not solve for <!>,. When s = n, the homogeneous 
problem (15.236), (15.238), and (15.239) has a nontrivial solution, and hence 
the inhomogeneous problem has a solution only if a solvability condition is 
satisfied. To determine this solvability condition, we first multiply (15236) by 
r to make it self-adjoint. The result can be rewritten in the self-adjoint form 

(r«l»;y + {ilj^r - 2ilnmcoxAnmrJn(ilnmr) (15.240) 

Moreover, putting s = n in (15.238), we have 

* n 0 ) = - n n m U ^ A m (15-241) 
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because / 0 = 0 according to (15.213). We note that (15.240) has a regular singu
lar point at the origin and that the boundary condition (15.239) is a bounded-
ness rather than a definite condition. Hence, we present the details of deter
mining the adjoint and the solvability condition. 

Multiplying (15.240) by u(r) and integrating the result by parts from r = 0 
to r m 1, we obtain 

= -2Q.„moj1Anm I ruJn(Slnmr)dr (15.242) 
JQ 

To determine the adjoint, we first consider the homogeneous problem. As be
fore, we set the coefficient of <!>„ in the integrand on the left-hand side of 
(15.242) equal to zero, that is, 

(ru')' + (a2
nmr - jju = 0 (15.243) 

Then for the homogeneous case, (15.242) becomes 

[ m ^ - m ' ^ l o - O 

But for the homogeneous problem, <S>„(1) = 0 and O„(0) < °°; hence, 

w ( l ) $ ; ( l ) - lim [ru$'n - ru'&n} = 0 (15.244) 
r -*0 

We choose the adjoint boundary conditions such that the two terms in (15244) 
vanish independently, that is, 

M(1) = 0 and Urn [ru<S>'n - ru'<&n] = 0 

The second condition is satisfied if u(0)<°°. Hence, the boundary conditions 
on u are 

u ( l ) = 0 and u ( 0 ) < ° ° (15.245) 

Thus, the problem is self-adjoint and the solution of the adjoint problem can be 
taken to be u =Jn(Q,nmr). 

Returning to the inhomogeneous problem, we obtain from (15.242) that 

ft^n2(nnm)/2nA»m=-2ftnmco1/lnm f rJitfl^r) dr (15.246) 
JQ 

But 
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£rJ2{*r)dr = ±r2J'n\ar)+\r2 {\-~^jj2(ccr) (15.247) 

Putting a * and using the fact that Jn(p.nm) = 0, we obtain from (15.247) 
that 

F rJ2{p,nmr)dr = £ (15.248) 

Using (15.248) in (15.246) yields 

ttnmf7nAnm =-ojlAnm (15.249) 

To analyze (15.249), we express Anm and f2n in polar form as 

Anm=\ anme^m f2n =F2neiv>» (15.250) 

and obtain 

t o , - - n ^ F ^ e ^ - 2 ^ (15.251) 

Since co, is real, it follows from (15.251) that 

vtn ~ 20„m - 0 or it 

Hence, 

0nm=i»2n OT \ (v2n ~ It) (15252) 

and it follows from (15.251) that 

=-QnmF2n OT Slnn^n (15.253) 

Substituting (15.250), (15.252), and (15.253) into (15.219), (15.231), and 
(15214) and noting that co0 = Slnm, we obtain to the first approximation 

- r f W ^ t f W ) cos ind + \ v2n) cos (to( l>f + T ) + • • • (15254) 

w ( 2 ) =a„mJn(Qnmr) sin (n$ + ± v2n) cos (co ( 2 ) f + T ) + • • • (15.255) 

where 

- « * • > • • • • ( 1 5 . 2 5 6 ) 

c o ( 2 > = n „ m ( l + e F a B ) + - - -

We note that, in the circular case, /3n m is arbitrary, and hence, there are two 
eigenfunctions sin rid and cos n6 corresponding to the same eigenvalue . 
However, in the near circular case, there are two different eigenfunctions cor
responding to the two different eigenvalue to*1) and to® if F2n 0. If F2n - 0, 
one needs to continue the expansion to higher order in order that the degeneracy 
may be removed. 
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Jo 

Next, we integrate by parts the integrals in (15.259) to transfer the derivatives 
from 0 to u. To this end, we note that 

I ( p 4 " ) " 0 " 
Jo 

j p4u<f>iv dx=p4u<f)'"\ - (p4u)'(f>"'dx= [ p 4 u 0 ' " - (P4«O '0"]o 
Jo lo JQ 

dX = [p 4 M0 ' " - ( P 4 " ) V + (/>4" )V]o 

( P 4 W ) " ' 0 ' dX = [p 4 W0" ' - ( p 4 U ) ' 0 " + ( p 4 K ) " 0 ' 

Jo 

- ( P 4 « ) ' " 0 ] o + f (P4U)'V<t>dx 
Jo 

J p3u<p"' dx " [p 3 w0" - (p 3M) '0' + (p 3w)"0}o - I (pju)"'0c/x 
0 Jo 

f p 2 « 0 " dx = [ p 2 « 0 ' - (p 2 « ) ' 0 ] o + f (P2")"<pdx 
Jo Jo 

15.10. A Fourth-Order Differential System 

We consider in this section the adjoint and solvability conditions for problems 
consisting of linear inhomogeneous fourth-order ordinary-differential equations 
and inhomogeneous boundary conditions. Thus, we consider 

P4(x)<t>iv + P 3 ( J C ) 0 ' " + p 2 ( * ) 0 " + p,(x )0' +Po(x)<f> =/ (* ) (15.257) 

0 ( 0 ) =0i 0'(O) = 0 2 0 (1 ) =03 0'(O = 04 (15.258) 

A system consisting of a fourth-order differential equation and general mixed 
boundary conditions is discussed in the next section, whereas a fourth-order 
eigenvalue problem is discussed in Section 15.12. 

To determine the solvability conditions for (15.257) and (15.258), we multi
ply (15.257) by the adjoint « ( x ) , which is specified below, integrate the result 
term by term from JC = 0 to x - 1 (i.e., the interval of interest where the boundary 
conditions are enforced), and obtain 

J P4U<pivdx+ I p3u4>'"dx+ I p2u<p"dx + I p,H0'cfjt+ I p0u<j>dx 
a Ja Ja JO Ja 

ifdx (15.259) 
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Jl plu<f>'dx=p1u<p - I (pxu)'<t>dx 
o o Jo 

With these expressions, we can rewrite (15.259) as 

<t>[(P4u),v ~ (Pzu)"' + ( p 2 « ) " - (Piu)'+p0u] dx 

Jo 
+ {p4U<t>"' ~ [ ( p 4 « ) ' - P 3 " ] 0 " + [ ( P4 « ) " " ( P3 « ) ' + P 2 " ] 0 ' 

" [ ( P 4 « ) ' " - ( P 3 " ) " + ( P 2 « ) ' - P , « ] 0 } o = F fudx (15.260) 
Jo 

As before, the differential equation describing the adjoint u is obtained by set
ting the coefficient of 0 in the integrand on the left-hand side of (15.260) equal 
to zero. The result is 

O W - ( P 3 " ) ' " + ( P 2 « ) " - (Pi f f ) ' + Po « = 0 (15.261) 

which is called the adjoint homogeneous differential equation to (15.257). 
In order that (15.257) be self-adjoint, (15.261) must be the same as the homo

geneous equation (15.257). Expanding the derivatives in (15.261) and rearrang
ing, we have 

P 4 " , w + (4p\ - p3)u"' + (6pl - 3p 3 + P 2 ) « " + ( 4p 4 " " 3/>S + 2p'2 - Pl)u' 

+ <J>iv " Pi' + P 2 " P'I + P o ) " = 0 (15.262) 

In order that (15.262) be the same as the homogeneous equation (15257), 

4 p 4 - p 3 ~ P 3 6p 4 " 3p 3 +p2 = p 2 

. Ill - II , — / in III , It l , 

4p4 - 3p 3 + 2p 2 - Pi = p, p 4 - p 3 + P 2 - P i + P o = P o 
or 

_ _ i ' ' "> in 3 II , i HI . i 
P 3 ~ 2 p 4 P 3 = 2 p 4 Pi = 2 p 4 - j P 3 + P 2 = ~ P 4 + P 2 

Then, (15.257) becomes 

p 4 0 , w + 2 p 4 0 " ' + p 2 0 " + ( p 2 - p 4 " ) 0 ' + p o 0 = 0 

which can be rewritten as 

dx . 2 ^ ) + | ( p 2 - P 4 ) £ J + Po0 - 0 (15.263) 

Hence, any fourth-order self-adjoint homogeneous differential equation can be 
written in the form 



434 SOLVABILITY CONDITIONS 

We note that, whereat a second-order differential equation can be multiplied 
by a factor to make it telf-adjoint as in (15.84), a differential equation of order 
higher than two cannot always be made self-adjoint. 

To determine the boundary conditions needed to specify ut we consider the 
homogeneous problem ( i . e . , /= 0 and 0„ = 0). Thus, using (15261) , we obtain 
from (15.260) that 

{pAu<t>"- [(p4u)'- p3u]<l>" + [(p*u)" - (p3u)' +p2u]<l>' 

- [iPAU),n-{p3uf^ip2u)'-pluW^Q 

But for the homogeneous problem, 0(0) - 0'(O) = 0(1) = 0'(1) = 0; hence 

£» 4 M|I0" ' (1 ) - [(P4u)'-p3u] | ,0"(1)- p4"lo0'"(O) 

+ [(p4u)' - p3u) |O0W(O) = 0 (15.265) 

We choose the adjoint boundary conditions such that each of the coefficients of 
0"(O), 0"(1), 0"'(O), and 0"'(1) in (15.265) vanish independently. The result is 

w(0) = 0 u ( l ) = 0 i / (0) = 0 w'(l) = 0 (15.266) 

Thus, the adjoint problem is defined by (15.261) subject to the boundary con
ditions (15.266). 

To determine the solvability conditions, we return to (L5.260), use the defini
tion of u, and obtain 

[p4u"<t>' - ( P 4 H " ' + 3p'4u" - p 3 M w ) 0 ] 0 = 1 fitdx (15.267) 
Jo 

Using (15.258), we rewrite (15.267) as 

(p4w"04 - p 4 i/"03 - 3p 4 u"03 + P 3 M " / 3 3 ) | I - (p 4 «"02 - p4w'"0i 

-3p;w"/3 1 +p 3 M " j3 1 ) | 0 = f fudx (15.268) 
Jo 

For every nontrivial solution u of the adjoint homogeneous problem, (15.268) 
provides a solvability condition. Clearly, if the adjoint homogeneous problem 
has only the trivial solution, (15.268) is satisfied identically for all values of 0n 

and/(jc). Next, we apply the above results to two examples. 

EXAMPLE 1 
Working with the streamfunction and using the method of multiple scales to 

determine the stability of nonparallel flows over a flat surface, one obtains the 
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inhomogeneous Orr-Sommerfeld problem 

0(O) = O ^ ( 0 ) = 0 

(15.270) 
d<t> n 

0, • 0 as y-+oo 
dy 

where R, k, and co are independent of y, and t7 and / are known functions of y. 
Moreover, the homogeneous problem is an eigenvalue problem having a non-
trivial solution. Hence, the inhomogeneous problem has a solution only if a 
solvability condition is satisfied. 

Expanding the derivatives, we rewrite (15.269) as 

0''" - (2k2 + ikRU- iojR)<f>n + (k4 + ik3RU - mk2R + ikRU")<t> = / (15.271) 

Hence, 

p 4 = 1 p 3 = 0 p 2 = -(2k2 + /TcKiV- /co/?) px = 0 

p 0 = * 4 + i * 3 /W - /coA:2/? + ikRU" 

Consequently, it follows from (15.261) that the adjoint homogeneous equation is 

uiv - [(2k2 +ikRU- icoR)u]" + (k4 + ik3RU- icok2R + ikRU")u = 0 

or 

uiv - ( 2 * 2 + ikRU - icoR)u" - 2ikRU'u + (k* + ik3RU - iojk2R)u « 0 

which can be rearranged to 

( £ - *')'" • m u *2u) • 2 i k R %%"0 ( 1 5 2 7 2 ) 

The boundary conditions on u are 

„ ( 0 ) = o „'(w-o ( ] 5 2 7 3 ) 

u,u'-*0 as _y °° 

Having defined the adjoint u, we substitute the boundary conditions (15.270) 
into (15.268) and take the upper limit to be •* instead of 1. Then, the solvability 
condition reduces to 
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f fudy=0 (15.274) 

EXAMPLE 2 
The analysis of the vibration of nearly annular plates with clamped edges by 

using the method of strained parameters leads to the following inhomogeneous 
problem: 

[\dr2 + rdr~ r 2 ) 

0(a) = 0 , 0 ( » = /32 <t>(b) =fo 

0 =/(r) (15.275) 

(15.276) 

where b >a and the /?„, n, and c o n m are constants. The homogeneous problem 
has a nontrivial solution so that the inhomogeneous problem has a solution only 
if a solvability condition is satisfied. 

Instead of expanding the operator in (15.275) and applying the solvability 
condition developed in this section, we show that it is more convenient to work 
directly with (15.275) because it can be made self-adjoint by its multiplication 
with the factor r. Thus, we multiply (15.275) with ru(r), where u(r) is a solution 
of the adjoint homogeneous problem to be specified below, integrate the result 
from r = a to r = b, and obtain 

f
 m [{$+77r 9J - " * " ] • * " j f m f d r ( 1 5 - 2 7 7 > 

If we let 

then, 

d2<p ^\_d± H * _ ^ = ^ 

dr2 r dr r2 
(15.278) 

(15.279) 

dr 



A FOURTH-ORDER DIFFERENTIAL SYSTEM 437 

*f,[;t.)"lN* ('"m 

where 
1 d ( du\ n2u Id2 1 d n2\ 

Substituting (15.281) into (15.280), we have 

Cb ,\d ( du\ n2ul J T d<t>(d2u 1 du n2u\ 

d (d2u t 1 du n^u\\b 

Cb Id2 1 d n2\2 

+ i ri^ + W r - s ) U d r (15 282) 

Substituting (15.282) into (15.279) and then substituting the result into (15.277), 
we obtain 

Cb \ld2 Id n2\2 . 1 . J d (d2<t> ld<t> n2 \ 

du (d2<J> l_d0 n2<f>\ d<t> fd2u 1 dt/ n2u\ 
" r dr \dr2 + r dr " r 2 / + ' dr \dr 2 + r dr r 2 / 

d / d 2 « ldw n 2
M \ l 6 f* 

To specify the adjoint u, we consider first the homogeneous problem for which 
/ = 0 and Qn = 0. Then, setting the coefficient of <t> in the integrand in (15.283) 
equal to zero yields 

7d 2 I d « 2 \ 2 1 

which is identical to the homogeneous equation (15.275), and hence, it is self-
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adjoint. Putting the 0„ = 0 in (15.276) and substituting the result into (15.283) 
with/= 0, we have 

[ru0'" + u 0 " - r u V ' l * = O ' 

or 

bu(b)<t>"'(b)+ [u(b)~ bu'(b)]<t>"(b)- au(a)<j>'"(a)- [u(a) - au'(a)]f(a) = 0 

(15.285) 

As before, we choose the adjoint boundary conditions such that each of the co
efficients of <t>"(a), 0"(6), <t>'"(a)y and <t>"'(b) in (15.285) vanish independently, 
and hence, 

u(a) = u(b) = 0 u'(a) = u'(b) = Q (15.286) 

Comparing (15.284) and (15.286) with (15.275) and (15.276), we conclude that 
the homogeneous problem is self-adjoint. 

Having defined the adjoint homogeneous problem, we return to the inhomo
geneous problem to determine the solvability condition. Substituting (15.284), 
(15.286), and (15.276) into (15.283), we obtain the solvability condition. 

bfau'Xb) - b&3u'"(b) - fou\b) - ap2u"(a) + + p > » = f rufdr 

(15.287) 

15.11. General Fourth- Order Differential Systems 

In this section, we consider the solvability condition of 

p4(x)<j>iv +p3(x)4>"'+p2(x)<t>" +pl(x)<t>' + p0<t>=f(x) a<x<b (15.288) 

£ cttftl = Pi for / = 1,2,3, and 4 (15.289) 
/-i 

where the are the components 4>"'{a)t 0"(a), 0'(a), <p(a), 4>'"(b), <t>"(b), <t>'(b), 
and <j>(b) of the column vector (f>b. We assume that the boundary conditions in 
(15.289) are linearly independent, that is, there exists at least one 4 X 4 non-
singular submatrix of [a , , ] . 

To determine the adjoint problem, we denote the operator on the left-hand 
side of (15.288) by/.so that 

^ 0 ) * p 4 0 ' ' w + p 3 0 " ' + p a 0 " + P l 0 ' + p o 0 a<x<b (15.290) 

where pV, p3 , p2, p\, and pQ are continuous over the interval [a, b]. If <f>(x) 
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and u(x) are any two functions possessing four continuous derivatives over 
[a,b], we have 

f uL(4>)dx= f [p4u<piv + p 3 U 0 " ' + / 7 2 u 0 " + p , u 0 ' + P o M 0 ) dx (15.291) 
JA da 

Integrating (15.291) by parts to transfer the derivatives from <f> to u, we obtain 

f uL(if>)dx= f 0 [ ( p 4 " ) l u - ( p 3 M ) ' " + ( p 2 « ) " - ( P i " ) ' + P o " ] ^ 

-'a -fc 

+ { p 4 U 0 ' " ~ [ ( p 4 " ) ' ' P 3 " ] 0 " + l ( P 4 " ) " " ( P 3 " ) ' + P 2 " ] 0 ' 

- [ ( P 4 « ) " ' " ( P 3 « ) " + ( P i « y " P l « ] * } J (15-292) 

We denote the operator in the integrand on the right-hand side of (15.292) by 
L*,that is, 

L*(u) = (pAu)iv - (p3u)"' + (p2u)" - (plU)' + p0u (15.293) 

Then, (15.292) can be rewritten as the following Green's identity: 

b 
[uL((f>) - <pL*(u)] dx = {p4u<p'" - [pAu + ( p 4 - p3)u)<t>" 

J 
+ [P4 " " + (2p 4 " Pz)U + (p4 ~ P3 + P 2 ) " ] 0 ' 

- [ p 4 « ' " + (3p 4 ~ P 3 ) " " + ( 3P4 " 2p'3 + p2)u' 

+ ( P 4 " - P 3 + P 2 - P O « ] 0 } J (15.294) 

The operator L* is called the adjoint operator corresponding to the operator I . 
One can easily verify that L is adjoint to L* so that L and L* are adjoint to each 
other. As in the preceding section, we call the differential equation 

L*(u) = 0 (15.295) 

the adjoint of the differential equation 

L (0 ) = O (15.296) 

and vice versa. If L =L*, we say that the operator L is self-adjoint,and the dif
ferential equation Z,(0) = O is self-adjoint. Comparing (15.290) and (15.293), 
we conclude, as in the preceding section, that L is self-adjoint if and only if 

p3 = 2p\ and Pi=p2~ pT 

Then ,(15.290) can be rewritten as 
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>̂-&(*3Kh-*5H (,5-297) 

The right-hand side of (15.294) is called a bilinear concomitant of 0 and u be
cause for a given 0 it is linear in u and for a given u it is linear in 0. Using vector 
and matrix notation, we rewrite (15.294) as 

[uL(<p)-d>L*(u))dx = ulP<l>b (15.298) 

where 0 6 has been defined earlier, ub is a column vector whose components are 
M » , u ' ( a ) , u ( a ) , u " \ b ) , u " ( b ) , u \ b ) , a n d u(b), andPis defined by 

A a 0 

0 -A„ 
(15.299) 

where 

0 0 

0 0 

0 P4 

_~P4 f 
P4 -

P3 

P4 

3P4 " P3 

3 p : - 2 p ' 3 + P a 
W H . I 

PA - P 3 +P2 ~ Pi 

(15.300) 

0 

"P4 

P3 ~ 2p 4 

P3 ~ P4 ~ P2 

We note that \P\ - ( p 4 ( a ) p 4 ( 6 ) ] 4 ^ 0, and hence,P is a nonsingular matrix. 
To determine the adjoint boundary conditions, we transform the right-hand 

side into a canonical bilinear form. To this end, we introduce a linear nonsingular 
transformation from 0 6 to according to 

3> = <20b (15.301) 

where fl is an 8 X 8 constant-coefficient matrix whose elements are Oty. We 
choose the first four rows to be the same as those in (15.289). The last four rows 
are arbitrary, except that they are linearly independent of each other and of the 
first four rows. As a consequence, for a given nonzero 0&, the last four rows can 
be chosen to produce any desired nonzero values for * 5 , * 6 , * 7 , and <I>g. This 
fact will be used later to define the adjoint of the above homogeneous system. 
The transformation (15.301) can be inverted to yield 

0 6 = ( J - 1 0 

Then, 

where 

I K ( 0 ) - <t>L*(u)) dx = uJ>(T14> - U r * (15 
da 

302) 

U r = u f / > ( J " 1 o r U = « r , ) 7 > r u 6 (15.303) 
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It follows from (15.289) and (15.301) that 

* f
 = 2>//0/ = 0/ 2,3,4 (15.304) 

To determine the adjoint problem, we consider the homogeneous case (i.e.,/3,= 
0) and set the left-hand side of (15.302) equal to zero. The result is 

f£/,4>, = 0 <*>,=0 for z = l , 2 , 3 , 4 
i = l 

Hence, 
Us$s + U6$6 + t/7<f>7 + £/8<f>8 = 0 (15.305) 

As mentioned above, for a given nonzero <f>b, the last four rows in d can be 
chosen to produce any desired values for $ s , 4>6, d>7, and <f>8 in (15.301). 
Thus, we can choose the last four rows in (2 so that <i>5 = 1 and <£6 = $ 7 = <i>8 = 
0. Then, it follows from (15.305) that Us = 0 . Similarly, we can choose the last 
four rows in (2 so that <i>6 - 1 and 4>s = * 7 = 4»8 = 0. Then, it follows from 
(15.305) that U6 = 0. Using similar arguments, we can show that t77 = (7 8 = 0. 
Therefore, the problem adjoint to 

1 (0 ) = 0 = 4>2 = $ 3 = 4>4 = 0 (15.306) 

is 

L*(u) = 0 Us=U6=U7=Us=0 (15.307) 

Having defined the adjoint problem, we return to the inhomogeneous problem 
to determine the solvability condition. With (15.307), Green's identity (15.302) 
becomes 

wL(0) dx = £ Up; (15.308) 

But it follows from (15.288) and (15.304) that 1 (0 ) =/ ( * ) and = ft for / = 
1,2,3, and 4; therefore, it follows from (15.308) that the solvability condition is 

u(x)f(x)dx = jr BM (15.309) 

15.12. A Fourth-Order Eigenvalue Problem 

As an application of the theory in the preceding two sections, we consider the 
eigenvalue problem 
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Order e° 

Order e 

<t>o + lO0'o + X O 0 O * 0 

0o(O) = 0S(O) = 0 o ( 7T ) = 0S(n)-O 
(15312) 

0 ? + 100" + X o 0 i = - (X, + / ) 0 O (15313) 

0i(O) = 0i(O) = 0j (it) = 0 '/(7r) = 0 (15314) 

One can easily verify that the solution of (15312) is 

0o = sinnx X 0 = n 2 ( 1 0 - n 2 ) (15315) 

We note that n = 1 and 3 produce the same eigenvalue X0 = 9. Hence, sin x and 
sin 3x correspond to the same eigenvalue X0 = 9 and the problem is degenerate 
when n - 1 or 3. For all other n, there is only one eigenfunction corresponding 
to each eigenvalue and the problem is nondegenerate. Both cases are considered 
below. 

Since the homogeneous first-order problem (15.313) and (15314) is the same 
as the zeroth-order problem (15.312) and since the latter has a nontrivial solu
tion, the inhomogeneous first-order problem has a solution only if solvability 
conditions are satisfied. To determine the solvability conditions, we need first 
to determine the adjoint problem. To this end, we multiply (15313) by u(x), 
integrate the result by parts from JC = 0 to x = it to transfer the derivatives from 
0t to u, and obtain 

f 0 1 ( M / w + 10K" + X 0 a) dx + [0',"w - 0 > ' + 0',tt" - 0 l W'"J J 
Jo 

+ lO[0',u- 0,u']J = - f (X, +f)4>0udx (15316) 
Jo 

Hence, the adjoint equation is 

0 / w + W + [ X + € / (x) ]0 = O € « 1 
(15.310) 

0(0) - 0"(O) - 0(TT) * 0"(TT) = 0 
We seek a first-order uniform expansion to (15.310) by using the method of 

strained parameters in the form 

0(x; e) = 0 o (x) + e0i(*) + • • • ( J 5 

X = X0 + eX, + • • • 
Substituting (15311) into (15310) and equating coefficients of like powers of 
e, we obtain 
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M / " - H 0 M " + \ O W = 0 (15.317) 

which is identical to the homogeneous equation (15.313). This is not surprising 
because the homogeneous equation (15.313) has the form (15.263). To deter
mine the adjoint boundary conditions, we consider the homogeneous problem 
(i.e., A, * 0 a n d / * 0 ) so that (15.316) becomes 

W"u - <t>'[u + <t>\(u" + lOu) - 0,(i/" + 1 0 M ' ) ] o = 0 (15318) 

Using the boundary conditions (15.314) in (15318), we have 

<t>?(it)u(n) + <p\(n) [«"(»)+ H>n(ir)] - ri"(p)i«<P) 

- 0',(O) [u" (0 )+ 10u(0)] = 0 (15319) 

As before, we choose the adjoint boundary conditions such that each of the 
coefficients of 0i" ( f f ) » 4>\(ir), 0i"(O), and 0'i(O) in (15319) vanish independently, 
that is, 

Thus, the first-order problem is self-adjoint. 
We return to the inhomogeneous problem, use the definition of the adjoint 

problem, and obtain from (15316) that 

for every solution u of the adjoint problem. Next, we consider the degenerate 
and nondegenerate cases starting with the second case. 

NONDEGENERATE CASE 
In this case, n 1 or 3 and the solution of the zeroth-order problem is given 

by (15.315). Then, the solution of the adjoint problem is u = sin nx, which when 
put in (15321) yields 

« ( 0 ) = « " (0 ) = « ( * ) = " " 0 0 * 0 (15 320) 

(15321) 

'o 
Hence, 

2 rn 

Ai = — I f(x) sin2 nx dx 
* Jo 

and it follows from (15311) that, to the first approximation, 

<p = sin nx + 0 ( e ) (15.322a) 
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Hence, 

where 

(15325) 

2 f 
/, 3 = — I / sin x sin 3x dx 

IT J 0 

For a nontrivial solution, the determinant of the coefficient matrix in (15325) 
must vanish, that is, 

Xi +/n fn 

fl3 A j + / 3 3 

= o 

Hence, 

X = * 2 ( I 0 - n2) - — / f(x) sin2 nx dx + 0 ( e 2 ) (15.322b) 
Jo 

DEGENERATE CASE 
In this case, n = 1 or 3 and the solution of the zeroth-order problem is 

0o =<*i sin x + a3 sin 3x X 0 - 9 (15.323) 

where the constants ax and a 3 are independent at this level of approximation, 
a manifestation of the degeneracy. With X0 = 9 , the solution of the adjoint 
problem is u = sin x or sin 3x. Putting (15.323) in (15321), we have 

I [Ai + f(x)] (ax sinx + a3 sin 3x ) « ( x ) dx = 0 (15324) 
Jo 

for all possible solutions of the adjoint problem. In this case, there are two 
possible solutions. Putting u = sinx and sin 3x, respectively, in (15324), we 
obtain 

I [*i + / (* ) ] (a\ sin x + a3 sin 3x) sinx dx - 0 
Jo 

J [XX +/(x) ] (a, sinx + a3 sin 3x) sin 3x dx = 0 
o 

Oi +/n)a» + / i 3 0 3 = O 

/ l 3 f l l + / 3 3 ) « 3 ; = 0 

2 f* 2 f " 
/ , , = — I /s in 2 x t fx / 3 3 = — I / s in 2 3xdx 

Jo n Jo 
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Xi + ( / n +/33>Xi +A1/33 - / i 2 3 = 0 

or 

xi0,xi2 ) = - £(/" + / « ) 4 i [(/» " / 3 3 > 2 + * A 1 1 / 2 O 5 - 3 2 6 ) 
Then, 

+ /11 
a3 - — ; — a i 

J13 

Therefore,it follows from (15311) that, to the first approximation, 

0<') = s inx - 1 / / , ! s i n 3 x + - -

713 

X 0 ) = 9 - \e(fn + / „ ) + £ e [ ( / „ - / 3 3 ) 2 + 4/? 3 ] l / 2 + • •; (15327) 

and 
><2> + f 

0 W = sin x sin 3x + • • • 

X<*> = 9 - i e ( / „ + / 3 3 ) - j e [ ( / „ - / 3 3 ) 2 + 4/?3J " 2 + • • • (15328) 

Thus, the degeneracy is removed from the problem at first order if A*,1* A , 2 \ 
that is, if / u =£/3 3 o r/ 1 3 0. 

15.13. A Differential System of Equations 

In this section, we consider the solvability conditions for a special system of 
first-order ordinary-differential equations. In the next section, we consider a 
general system of first-order equations, whereas in Section 15.15 we consider 
two systems of differential equations with interfacial boundary conditions. 

In analyzing the propagation and attenuation of sound waves in an annular 
duct carrying compressible mean flows, one may encounter the following 
inhomogeneous problem: 

-/(co - fcuo)04 + /*p o 0, + ̂  0 3 + ̂ ^ ( r p o 0 2 ) =/,(r) (15.329) 

-ip0(oj - ku0)<f>i + pow'o02 + Ms -fiir) (15330) 

-/p0(w - * M o ) 0 3 + 0', « / 3 ( r ) (15.331) 

-/p0(to - * M o ) 0 3 + ~ 0 5 = A(r) (15332) 

- j p 0 ( c o - fruo)06 + P o 7 " o 0 2 + 1 (7 - 1) ( t o - ku0)<t>s =/ 5 ( r ) (15333) 
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05 _ 04 i 06 

Po Po 
(15.334) 

03 ~ /3|0» - a i at r~Ri 

02 " 020s = a2 at r = / ? 2 

(15.335) 

where «o> Po. Po» ^o. and /„(r ) are known functions of r and to, m, A:, a „ , 0„, 
and 7 are independent of r. We note that four of the equations are algebraic 
equations. In the analysis, the homogeneous problem has a nontrivial solution so 
that the inhomogeneous problem has a solution only if a solvability condition is 
satisfied. 

To determine the solvability condition, we multiply (15.329) with 0 , , (15 330) 
with 0 2 , (15331) with 0 3 , (15.332) with 0 4 , (15333) with 0 s ,and (15334) 
with 0 6 . Then, we add the resulting equations, integrate the result by parts from 
r = Rt t o r = /?2 to transfer the derivatives from the 0„ to the 0 „ , and obtain 

f 'Po01 [~<302 + * 0 l ] dr+ j * po02 j ^ - / C O 0 3 + "002 " T ^ 

+ r o 0 5 l c f r + f /po03 [-co04 + — 0i 1 dr + f 04[-/'co0, 

where co = co - ku0. As before, to define the adjoint, we first consider the homo
geneous problem (i.e., an = 0 and/„ = 0). We note that the integrands have been 
arranged so that the coefficients of the 0„ are separated. This is because the 
adjoint equations are defined by setting the coefficient of each 0„ equal to zero. 
The result is 

(15.336) 

- C O 0 2 + A T 0 J 0 (15337) 

(15338) 

- C O 0 4 + — 0 1 0 (15339) 
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/c30, + T o p o ^ s 0 (15340) 

im 
ikfo - 0 ' 3 + — 0 4 + ' (7 " 1 ) ^ 5 + PoTote'O (15341) 

r 

i c j 0 s + p 0 ^ 6 = 0 (15342) 

Equations (15337) through (15 342) are the equations adjoint to the homo
geneous equations (15 329) through (15334). To determine the boundary 
conditions on the 0 n , we set the /„ = 0 in (15.336) and use (15337) through 
(15.342). The result is 

[p0*2*i + * s lM ; l ! = 0 (15343) 

Putting cr„ = 0 in (15.335) and then substituting for 0 2 in terms of 0 5 , we rewrite 
(15.343) as 

( Po f t ^ l + * 3 ) r - J « 1 <t>s(R7)-(PoMl + ^ 3 ) r = K , 0 s ( * l ) s O (15344) 

As before, we choose the adjoint boundary conditions such that each of the 
coefficients of 0 5 ( R 2 ) and <t>s(R\) in (15.344) vanish independently. The re
sult is 

^ 3 + P O 0 2 0i = 0 at r = R2 

2 1 (15345) 
^ 3 + Poi3i 0 i = 0 at r = Rt 

Thus, the adjoint homogeneous problem is specified by equations (15337) 
through (15 342) subject to the boundary conditions (15.345). 

Returning to the inhomogeneous problem, we use (15337) through (15.342) 
in (15336) and obtain 

5 rR* 
[ P o 0 2 0 i + 0 s 0 3 ] ^ = £ *"f»dr (15346) 

n = 1 JR , 

Substituting for 0 3 from (15.345) in terms of 0 i and substituting for 0 2 from 
(15.335) in terms of 0 5 , we rewrite (15.346) as 

s fR* 

a2Po(R2)*i(Ra)-ffiPo(Ri)^i(Ri)a £ Mndr (15347) 
n = 1 JRt 

which is the required solvability condition. 

15.14. General Differentia] Systems of First-Order Equations 

We consider the solvability conditions for the problem 

~ - A(x)<p=f(x) (15348) 
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or 

0 r 0 f - f ( ^ + 0 r / l ) 0 d x * f 0 r f< fr (15351) 
lo Jo \ dx I ja 

The adjoint equations are defined by setting the coefficient of 0 in the inte
grand in (15.351) equal to zero and obtaining 

-— + \\iTA = 0 
dx 

Taking the transpose, we have 
T 

+ ( 0 r /O r = O 

or 

M O - A for « = 1,2 m ( ] 5 3 4 9 ) 

0/O)-0< for i = m + l , m + 2 , . . . ,n 

where 0 and f are column vectors with n components,^ is an n X n matrix, and 
the fa are known constants. The boundary conditions need not be disjoint as in 
(15 349). The theory is applicable to any n linearly independent combinations 
of 0/(0) and 0,(1). Two general cases are considered at the end of this section. 

We assume that the homogeneous problem has a nontrivial solution so that the 
inhomogeneous problem will have a solution only if solvability conditions are 
satisfied. To determine the solvability conditions of (15.348) and (15349) , we 
multiply the rth equation in (15348) with 0/ and add the results. This step is 
equivalent to multiplying (15348) from the left with \jtT, where 0 r is the 
transpose of the adjoint column vector 0 with n components. Thus, we have 

0 r ^ - 0 r 4 0 = 0 7

f 

dx 

which, upon integration from x = 0 to x - 1, gives 

I *TdidX~ I *TA*DXS JQ *TFDX
 0 5 3 5 0 ) 

Integrating by parts the first integral on the left-hand side of (15350) to transfer 
the derivative from 0 to 0 T , we obtain 

II pi . i T rl fl 

— 0rfx - \\>TA$dx = I 0 7 f c f r 
o Jo dx JQ J0 
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dxlt 
— + > 1 7 > = 0 (15352) 
dx 

Comparing (15348) and (15352), we conclude that the differential equations 
are self-adjoint if A = -AT. To determine the boundary conditions on 0, we con
sider the homogeneous problem. Setting f = 0 in (15 351) we obtain 

0r0lo = O (15353) 

or 

[0 i0 i+ 0202 + - " + 0«0n]o = O (15354) 

Putting ft = 0 in (15349) and substituting the result into (15354), we have 

0,(1)0,(1) + 0 2 (1 )0 2 (1 ) + • • • + 0 m ( l ) 0 m ( l ) - 0 m + , ( O ) 0 m + ,(0) 

" 0m + 2 ( O ) 0 m + 2 ( O ) **(O)0„(O) = O (15355) 

As before, we define the adjoint boundary conditions such that each of the 
coefficients of the 0/(1) for i = 1, 2 , . . . , m and the 0/(0) for / = m + 1, m + 2, 
..., n vanish independently. The result is 

0/(0) = 0 for / = m + l , m + 2, . . . , n (15356) 

0/(1) = 0 for / = l , 2 , . . . , m 

Returning to the inhomogeneous problem, we substitute (15 349) , (15 352) , 
and (15356) into (15.351)and obtain 

/?m+10m+lO) + ^ + 2 0 m + 2 O ) + - ' + / 3 „ 0 n ( l ) 

-0i0i(O)-/3202(O) ^ 0 ^ ( 0 ) = f 0rf<*x (15357) 

as the desired solvability condition. 
Instead of the boundary conditions (15 349) , let us consider the general 

boundary conditions 

0(0)= (30(1 ) + 0 (15358) 

where (J is an n X n constant matrix and 0 is a column vector with n components. 
In this case, all preceding equations up to (15.354) still hold. Thus, considering 
the homogeneous problem (i.e., f = 0 and 0 = 0), we find from (15353) and 
(15.358) that 

0 r ( l ) 0 ( l ) - 0 r ( O ) 0 ( O ) - 0 T ( l ) 0 ( l ) - 0 r(O)<J0(l)«O 

or 

[ 0 r ( l ) - 0r(O)(3]0(l) = O (15359) 
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<*> = < |0 6 (15 365) 

where f2 is a In X 2n constant coefficient matrix whose first n rows are the same 
as those in (15364) so that 

= L <*ifr = & ' = ! . 2 n (15 366) 

As before, we choose the adjoint boundary conditions such that each of the 
coefficients of the 0/(1) vanish independently. The result is 

0 r ( l ) - 0 r ( O ) < ! - 0 

which, upon taking the transpose, becomes 

0 ( l ) = ffr0(O) (15360) 

Returning to the inhomogeneous problem, we use (15352) in (15.351) and 
obtain 

0 r ( l ) 0 ( l ) - 0 r ( O ) 0 ( O ) - f 0 r f d x (15361) 
Jo 

Substituting for 0(0) from (15358) into (15361), we have 

0 r ( l ) 0 ( l ) - ^ r ( O ) ( ? 0 ( l ) - ^ r ( O ) 0 = f 0 r f d x (15 362) 
Jo 

Using (15360), we find that the first two terms on the left-hand side of (15362) 
vanish, and hence, it reduces to 

- 0 r ( O ) 0 = f 0 r f c t c (15363) 
Jo 

which is the desired solvability condition. Problems with similar boundary 
conditions can be treated the same way. 

Finally, we consider the most general linear boundary conditions 

2rt 
E M r f t 1 = 1 , 2 , . . . , * (15364) 

/ = > 

where the 0y are the 2« components of the boundary column vector 0 f t whose 
first n components are given by 0(1) and whose last n components are given by 
0(0). Again in this case, all equations up to (15.354) still hold. To determine the 
adjoint boundary conditions, we introduce a linear nonsingular transformation 
from <pb to 4> according to 
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As before, the last n rows are arbitrary, except that they must be linearly in
dependent of each other and of the first n rows. Thus, if 0 6 =£0, they can be 
chosen to produce any desired values for 4>f, / > n + 1. 

It follows from (15.353) that 

V<PYO = 0 r ( l ) /0 ( l ) ~ 0r(O)/0(O) = o 

or 

or 

[ ^ ( 1 ) ^ ( 0 ) ] 
*/ o" 
.0 -/. .0(0). 

= 0 

^010 = ^ 0 6 = 0 

where / is the n X n identity matrix and 

7 0 

(15 367) 

P = 
0 -/ 

Solving (15 365) for 0 6 , we have 

Hence, (15367) becomes 

or 

where 

0 & = <r 1 * 

0 r 0| o = ^ r * = 0 (15368) 

(15369) 

It follows from (15366) that the homogeneous boundary conditions are */ = 0 
for / « 1 ,2 , . . . , n. Hence, (15368) becomes 

2n 

£ *,<!>, = 0 
i * /i • I 

(15370) 

Since the last n rows in 6 can be chosen so that the last O,-, i = n + 1, . . . , 2n 
can assume any nonzero values, it follows from (15370) that 

for J=n + l,n + 2 , . . . ,27* (15.371) 

Having defined the adjoint equations (15.352) and boundary conditions 
(15371), we return to the inhomogeneous problem to determine the solvability 
conditions. Using (15352) and the fact that 0 r 0| o = tyT<&, we obtain from 
(15351) that 
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l»1 «V 

for every possible solution of the adjoint problem. 

15.15. Differential Systems with Interfacial Boundary Conditions 

In analyzing the propagation of waves on the interfaces of composite materials, 
one may encounter inhomogeneous differential equations and inhomogeneous 
conditions imposed at the interfaces. In this section, we consider, as an example, 
the solvability condition for the inhomogeneous problem that arises from the 
coupling of torsional modes in a clad-rod having a sinusoidally perturbed core-
cladding interface. Thus, we consider the problem 

+ =/.(/•) 0<r<a (15 373) 

^ + r ^ ~ ( T * + ? ) 0 a * / a ( r ) ° < r < b ( 1 5 3 ? 4 ) 

0 i ( O ) < ~ <P2(b)-b<t>'2(b) = 0 

> i - 0 2 ~ 0 i 02 " - M20i =0 2 at r - a 
(15375) 

where a2,, y„, iin, 0„, a, and b are constants. 
As discussed in Section 15.9, the homogeneous equations in (15.373) and 

(15374) can be made self-adjoint by multiplying each with r. Thus, to deter
mine the solvability condition for (15373) through (15.375), we multiply 
(15 373) by ru\(r), integrate the result from r - 0 to r - a, and obtain 

J[ J M / * I ) ' + ( o f r - ^ M i JT n i j A d r (15.376) 

which, upon integration by parts, gives 

[rut<p\ - m ' ,0 ,J o + j " 0i j\™'i ) '+ (<*»r--jj u, j dr" rujxdr 

(15377) 

*T<t> = [ \}/Tfdx (15372) 
Jo 

Substituting (15366) and (15370) into (15372), we obtain the desired solv
ability condition 
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Similarly, we multiply (15374) by ru2(r), integrate the result from r-a to 
r = b, and obtain 

jf ^ " 2 ( ^ 2 ) ' " [ylr + 0 2 " 2 d r = fa dr 

which, upon integration by parts, gives 

[ r u 2 0 2 - m 2 0 2 ] J + £ 0 2 ^ ( ^ 2 ) ' - ( 7 " r + 7^ " 2 ] J r = j f m i f * d r 

(15378) 

Next, we add (15377) and (15378) to obtain 

[ r w 2 0 2 - m 2 0 2 ] J + [rux<t>\ + J 0, £ + ^ a j j r - - ^ u , j dr 

[ + / ^ 2 [ ( r w ^ ' ~ ( 7 " r + " r ) " 2 ] C ? r = / rulfidr+ j ru2f2dr 

(15379) 

To define the adjoint homogeneous problem, we consider the homogeneous 
problem (i.e., fn = 0 and B„ = 0 ) . Then, the adjoint equations are defined by 
setting the integrands in (15 379) equal to zero, that is, 

(ru\)' + [^anr - jj « , = 0 (15 380) 

(ru'2)'- ( < y 2 r + - ^ u 2 = 0 (15381) 

Then, (15.379) becomes 

bu2(b)<t>'2(b) - bu'2(b)<t>2(b) - lim [rux<j>\ - ru\<t>x] 

+ aux(a)<t>\(a) - au\(a)<t>x{a) - au2(a)<t>'2(a) + au'2(a)<p2(a) = 0 (15382) 

Since (15380) possesses a bounded solution and an unbounded solution and 
since 0,(0) < °°, the term involving the limit as r -* 0 in (15 382) vanishes if 

M , ( 0 ) < < » (15383) 

For the homogeneous problem, it follows from (15.375) that 

<t>2(b) = b<p'2(b) 

0 2 (a) = 0i (a) , 0'2(a) = /i,0',(a) + /i20i(fl) 
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ruxfx dr+ I ru2f2 dr 

which, upon using (15385), simplifies to 

-a(l2u2(a)-aPxu2(a)= I ruxfxdr+ I ru2f2dr (15.387) 
Jo Jfl 

Equation (15387) is the desired solvability condition. 

15.16. Integral Equations 

In this section, we consider the solvability condition of Fredholm's integral 
equation 

Hence, (15382) becomes 

b[u3(b)-bu'2(b)) d>,
i(b) + a[ul(a)-fJtlu2(a)]<t>\(a) 

+ a[u3(a) - u\(a) - p 2 u 3 (a)} 4>x(a) - 0 (15.384) 

Again, we choose the adjoint boundary conditions such that each of the coef
ficients of 4>'2(b), 0i(a), and <px(d) vanish independently. Hence, 

u2(b) = bu2(b) ux(a) = mu2(a) (15385) 

u2(a) -u\(a)- u 2 u2(a) = 0 

Therefore, the adjoint problem is defined by (15.380)and (15.381)and boundary 
conditions (15383) and (15385). Comparing the adjoint problem with the 
original homogeneous problem, we conclude that, although the differential 
equations are self-adjoint, the homogeneous problem is not self-adjoint unless 
M, = 1 . 

Having defined the adjoint problem, we return to the inhomogeneous problem 
to determine the solvability condition. Using (15.380), (15.381), and (15383) 
in (15.379), we obtain 

bu2(b)<t>2(b) - bu'2(b)<t>2(b) + aux(a)<t>x(a) - au\(a)4>x(a) - au2(a)<l>'2{a) 

+ au2(a)<f>2(a)= J ruxfxdr + ru2f2dr (15386) 

Substituting for <p2(b), <j>2(a), and <j>'2(a) from (15.375) into (15386), we have 

b[u2(b) - bu2(b)] <t>'2(b) + a[ux(a) - HiU2(a)] <t>\(a) 

+ a[u2(a) - u\(a) - li3u2(a)} <j>x(a)- ap2u2(d) - a$xu2(a) 
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0(s) ds 

0(s) = / ( 5 ) + X f K(s,t)<t>(t)dt (15.388) 

when the homogeneous problem (i.e., / = 0 ) has a nontrivial solution. To deter
mine the solvability condition for (15.388), we multiply it by 0 (5), integrate the 
result from s = a to s = b, and obtain 

f b fb fb T fb 

0 (5 )0 (5) <ft = /W(s )</s + X K{s,t)<t>(t)dt 
Ja J a L •'a 

or 

0 (5 )0 (5) c f5= I /(s)0(s )d5 + X I K(s,t)<l>{t)Us)dtds 
u •'a •'a «/a 

which, upon interchanging the integrations with respect to s and r in the double 
integral, gives 

f b fb fb fb 

0(s )0(s )ds-X I K(s,f)4t(s)4>(t)dsdt<* J f(s)Ws)ds 
Ja J a da 

(15389) 
Since s and f are dummy variables of integration, they can be interchanged in 
the double integral so that (15.389) can be rewritten as 

J b fb fb fb 

0 (5 )0 (5) ds - X I I K(t, 5 )0(00 (5) dtds= I /(5 )0(s) ds 
J a •'a J a 

or 

jf j^0(s)-Xj[ K{t,s)ty(t)dt <p(s)ds = jf f(s)\lj(s)ds (15390) 

To define the adjoint equation, we consider the homogeneous problem (i.e., 
/ = 0). Then, (15390) becomes 

f h-xf 6 r /*b ( 

0 (5) eft = 0 (15391) 0 ( s ) - X K(t,s)ty(t)dt 
J a 

We choose the adjoint equation such that 

0 (5) = X K(t,s)ip(t)dt (15392) 
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Comparing (15392) with the homogeneous equation (15.388), we conclude that 
the adjoint equation differs from the homogeneous equation in that the integra
tion is performed with respect to the first variable in the kernel K(s, t). There
fore, the homogeneous equation is self-adjoint if and only if the kernel K(s, t) 
is symmetric, that is, K(s, t) - K(t, s). 

Having defined the adjoint equation, we return to the inhomogeneous problem. 
Using (15392) in (15.390), we obtain the desired solvability condition 

which states that the inhomogeneous problem is solvable only if the inhomoge
neous term f(s) is orthogonal to every solution of the adjoint problem. It turns 
out, in this case, that (13393) is also a sufficient condition for the inhomoge
neous problem to have a solution. If the homogeneous problem does not have 
a nontrivial solution, (15393) is satisfied automatically because 0(s) = O. These 
statements constitute Fredholm's alternative theorem: either the integral equa
tion (15.388) is soluble for any f(s) and the homogeneous equation has only a 
trivial solution or the homogeneous equation has nontrivial solutions and the 
inhomogeneous equation is soluble if and only if the inhomogeneity is orthog
onal to every solution of the adjoint homogeneous problem. 

As an application of the theory, we consider the case of a degenerate kernel. 
The kernel K(s, t) is said to be degenerate if it can be expressed as a finite sum of 
products of functions of s and tt that is, 

a 
(13393) 

N 
(15394) 

In this case, (15388) can be rewritten as 

(15.395) 

To solve (15395) , we put 

a 
(15.396) 

Then, (15395) becomes 

N 
0(s )« / (* ) + X £ xpfa) (15397) 

We multiply (15397) by 0,(s), integrate the result from s - a to 5 = b, and obtain 
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f 6,{s)<l>(s)ds= f fy(s)/(s)<ft + X £ x, f <*(«)0/(s)<fc (15.398) 

•'a -'a / = i J a 

It follows from (15.396) that the term on the left-hand side of (15.398) isx y so 
that 

xi=fj + *jt, "J* / = l , 2 , . . . , A r (15399) 
i = l 

where 

(15.400) 

Equation (15.399) can be rewritten in matrix notation as 

[I-\A]x = f . (15.401) 

where I is an NX N identity matrix, A in an NX N matrix whose elements are 
the dfi, and x and f are column vectors with the components xt and /}. 

We note that the problem of solving the integral equation (15388) has been 
transformed into the problem of solving the linear algebraic system of equations 
(15.401). As discussed in Section 15.1, if the homogeneous system of equations 
(15.401) has only the trivial solution, the inhomogeneous system has a unique 
solution for every f. On the other hand, if the homogeneous system (15.401) 
has a nontrivial solution (i.e., 1/ - X.4I = 0) , the inhomogeneous problem has a 
solution if and only if 

(u , f ) = 0 (15.402) 

where u is any solution of the adjoint system 

[I-\A)*u = 0 (15.403) 

Since A is real, (15.403) can be rewritten as 

[/- X ^ r J u = 0 

or in tensor notation as 

u r X £ tf„u,-0 (15.404) 
/ - i 

Thus, the problem is self-adjoint if and only if A is symmetric, that is, atj = Ujh 

which happens if, for example, 
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15.17. Partial-Differential Equations 

In this section, we consider the solvability conditions for systems governed by 
partial- rather than ordinary-differential equations. The procedure in this case is 
similar to that followed in the case of ordinary-differential equations except that 
the integration is carried out over more than one dimension. We describe the 
procedure by applying it to two examples. 

EXAMPLE 1 
In analyzing the propagation of acoustic waves in acoustically lined rectangular 

ducts with varying cross sections, one encounters the inhomogeneous problem 

3 2 0 d2<t> 

^ + -^7 + A 0 = / ( y , z ) 0<y<a 0<z<b (15.405) 

0(O,z) = O,0O,O) = O (15.406) 
30 
— - o t , 0 = p\(z) at y = a 

y (15.407) 
30 
— - o 2 0 * j 3 2 ( » at z = b 
dz 

To determine the solvability condition for (15.405) through (15.407), we 
multiply (15.405) by u(y, z) and integrate the result over the domain of interest; 
that is, 0 <y < a and 0 < z < b. The result is 

f f [" & + " & + H * * = f f u f i y d i ( i $ a o s ) 

Next, we integrate (15.408) by parts to transfer the derivatives from 0 to u. 
Thus, 

{ I "5?**-j[[j[ - s H * 
- f [ f r S - S * ) l / f * S H * ^ 
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Using (15.409) and (15.410), we have 

•f(-5-S»)l>-f(-5-MI>^» 
which can be obtained alternatively from the general Green's identity 

$(uV24>-<t>V2u)dS=j> ( M ^ ~ 0 ^ ) d s (15.412) 

where T is the boundary of 5. 
As before, we define the adjoint equation by setting the coefficient of 0 in 

the integrand on the left-hand side of (15.411) equal to zero, that is, 

b2u d2u 
+ _ + X u = 0 (15.413) 

by1 bzl 

To define the adjoint boundary conditions, we consider the homogeneous prob
lem (i.e.,/= 0 and 0„ • 0 ) . With/= 0, (15.411) becomes 

n**)i>-r(-2*)i>" <•""' 
The homogeneous boundary conditions (15.407) can be rewritten as 

30 30 
— = a ,0 at y-a and — = a 2 0 at z = b (15.415) 
oy dz 

Using (15.406) and (15.415) in (15.414), we have 

f [(B,"-SR'"2l.]*+f [KSR 
- u ~~J afy = 0 (15.416) 

0 2 lo J 

Since (15.416) should hold for ah* 0 ( j , z) satisfying the homogeneous equation 
(15.405) and homogeneous boundary conditions (15.406) and (15.407), each of 
the coefficients of 

30 30 
<Ha,z) ~ ( 0 , z ) 0 (>. b) ^(y,0) 

oy oz 
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must vanish independently; that is, 

u(0,z ) = 0 u(y, 0) = 0 (15.417) 

ot i u = 0 at y - a 
dy 

(15.418) 
3w 
- — a 2 « = 0 at z = b 
oz 

Having defined the adjoint problem, we return to the inhomogeneous problem. 
Using (15.405) and (15.413) in (15.411), we have 

f f " * - i > 3 - S ' ) l > r ( - 2 * ) | > 
which, upon using (15.406), (15.407), (15.417), and (15.418), becomes 

Jt»b (*a pb fa 

ufdydz = 01(z)u(a,z)dz + ^(y)u(y,b)dy (15.419) 
o •'o JQ • '0 

Therefore, the inhomogeneous problem has a solution only if (15.419)is satisfied 
for all possible solutions u(y, z) of the adjoint problem defined by (15.413), 
(15.417), and (15.418). Comparing the adjoint problem with the original homo
geneous problem, we find that they are identical, and hence, the problem is 
self-adjoint. 

EXAMPLE 2 
As a second example, we consider the solvability condition of the inhomoge

neous problem consisting of equation (15.223) and the boundary conditions 
(15.224) and (15.225). Rather than expanding 4>x and / in Fourier series and 
reducing the governing equation into an ordinary-differential equation, we work 
directly with the partial-differential equation. To this end, we rewrite (15 223) as 

V 2 0 i + ojl<px = -2ca o ^ i0o (15.420) 

Either we multiply (15.420) by u(r, 9) and integrate the result by parts or we 
use Green's identity (15.412). Since we performed the integration by parts in 
the preceding example, we apply Green's identity (15.412). Since there are solu
tions of (15.420) that are unbounded at the origin, we take S to consist of the 
area bounded by r * r 0 and r » 1, where r0 is very small. Then, dS**rdr dd and 
ds m rdd. Moreover, 30/3n » 30/3r on r * 1 and 30/3n * -30/3r on r » r 0 because 
n is the outward normal. Then, (15.412) becomes 
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Jo V-^-^Jr) 
r0dd (15.421) 

dd 

Substituting for V2<px from (15.420) into (15.421), we have 

I I - 2coocoir0ott drdO - J I 0, [V2w + OJQU] rdr> 

Jo Jr0 Jo Jr„ 

T(^-si,-r(^-*s)L -
(15.422) 

As before, the adjoint equation is defined by setting the coefficient of 0, in 
the integrand on the left-hand side of (15.422) equal to zero, that is, 

V2u + colu = 0 (15.423) 

which is identical to the homogeneous equation (15.420), and hence, the latter 
is self-adjoint. Using*(15.423) and considering the homogeneous problem (i.e., 
OJ, = 0 and /= 0 ) , we obtain from (15.422) that 

J0 dr r = 1 r 0 - * ° J0 \ dr v x dr) 
rodd=0 (15.424) 

Since 0,(0, 0 ) < ° ° , the last term in (15.424) vanishes if u(0, B)<°°. Since 
(15.424) should hold for all possible 0,(r, 0) satisfying the homogeneous equa
tion (15.223) and homogeneous boundary conditions (15224) and (15225), 
the coefficient of 90, /dr must vanish, that is, u ( l , 0 ) = O. Thus the adjoint 
boundary conditions are 

u ( O , 0 ) < ~ and u ( l , 0 ) = O (15.425) 

Comparing (15.423) and (15.425) with the homogeneous equations (15.223) 
through (15.225), we conclude that the problem is self-adjoint. 

To determine the solvability condition, we return to the inhomogeneous 
problem. Using (15.423) and (15.425) and taking the limit asr 0 - »0 ,we obtain 
from (15.422) that 

r2n rl r2vt 

2cu0co, I I npoudrdO" j 0, — 
J 0 Jo Ja dr 'o 

which, upon using (15.225), becomes 

>2n r 1 

d0 
r - 1 

2co0co! I f r<t>Qudrdd = - f 
J0 Jo Jo 9 r 9 r 

f(d)d6 (15.426) 
r ~ 1 
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Substituting for <t>0 from (15.231) into (15.426) and recalling that co0 » n ^ , 
we have 

2co, f f rJn(nnmr)(Anmelne +Anme-'"e)udrdO 

J/»2w I (4 
A 

2w 

. - . - mi i 

/(0)cY0 (15.427) 

Since the problem is self-adjoint, 

u = / . . ( i W ) * * * or Jn(Q,nmr)e-ine 

and (15.427) should hold when u is replaced by any one of them. Using the 
second solution for u, we obtain from (15.427) that 

Jo Jo 

= - I W f t f l , , * ) f * [ A ^ m ^ A ^ e - ^ m ] dd (15.428) 
Jo 

Using (15 J248) and the fact that 

f 

Jo 

.2 IT 

Jm6 e'ma dd = 0 
' 0 

when m is an integer, we obtain from (15.428) that 

which is identical with (15 249). 

Exercises 

15.1. Determine the solvability conditions for 

ft,+Aa+2u,- J ] Pneint 

n = l 

ii2 - « , + 2u2 = £ Qneint 

n = 1 

where the ̂  and Q„ are constants. 
15.2. Determine the solvability conditions for 
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x + y + x -Pxe2lt + P2ei2'> 

y- %x + 2y = Qxe2it + Q2ei2" 

where the P„ and Qn are constants. 
15.3. Determine the solvability conditions for 

(a) u" + i « = / ( x ) 
i / (0 ) = a u(n) « b 

(b) u +-u +k2u=f(x) 
x 

u ( a ) = c l u(b)-c2 

where b > a > 0 and the homogeneous problem has a nontrivial solution. 
15.4. Determine the solvability condition for the problem 

u ( 0 ) < ° ° u'(a) = g 

where a and g are constants and X is a root of J'nCka) - 0. 
15.5. Determine the solvability condition for 

0'(O) = O 0'<d) = 0 
(b) 0" + 7«0 = / U ) 

0'(O) = O 0 ' ( l ) - a 0 ( l ) = j3 

where yn tan yn = -a . 
15.6. Determine the solvability conditions for 

(a) <t>" + 0 = / U ) 

0 , ( 0 , z) = 0 0Z(>', 0 ) = 0 

15.7. Determine the solvability conditions for 

0 ( O ) < « 0 ' ( l ) - /30( l ) = a 

where y^ is a root of 7 / ^ ( 7 ) - 0Jn(y) - 0. 

15.8. Determine the solvability conditions for 
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dr2 r dr 

15.11. Determine the solvability conditions for 

d 2 0, 1 d<pi ( . i \ 

0 | » / i , 0 i + / i 2 0 2 , 0 2 =/i 30, +/ i 4 0 2 at r * l 

0 , ( O ) < ~ C0 2 O ) - 0 2 ( f l ) = 0 fl>l 

where the homogeneous problem has a nontrivial solution. 
15.12. Determine the solvability condition for 

d 2 0 T 1 7*o 

dr2 L r T0 

2ku( d<p (co - ku0): 

o co - ku0 J dr 

4>(0)<<*> 0 ' - 0 0 = a at r = 1 

m 2 l 
fir) 

when 7"o. u 0 , and fir) ire known functions of r; co, k, 0, and a are constants; 
m is an integer; and the homogeneous problem has a nontrivial solution. 
15.13. In analyzing waves propagating in a/ duct, one might encounter the 
problem 

a 2 ^ a 20 
— + — + 5TT 20 • f(y) sin 2nx 
ox by 

30 

dy 
» 0 at > - 0 

0 ( O , 0 ) < ~ <t>r(ltd) = aein9 

where ynm is a root of ^ ( 7 ) = 0. 
15.9. Determine the solvability conditions for 

d2u 2 du 
— - + + Xu = F(r) 

dr2 r dr 

u(a) * ua 

u(b)= ub 

when X is an eigenvalue of the homogeneous problem. 
15.10. Determine the solvability conditions for 

V 4 w - Xw = F(r) 

w ( 0 ) O w ( l ) » 0 | H/(1) = 0 2 

when X is an eigenvalue of the homogeneous problem and 

V 2 = — + 
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d<t> 
— = a sin 2itx at y = 1 
dy 

Show that the solvability condition is 

J cos ny f(y) dy - -a 
'o 

15.14. Determine the solvability conditions for 

dx <t>x(0,y) = 0 ^ ( x , 0 ) = 0 

b<p 
— (a, y) - otx(y)<t>(a, y) = Qx(y) 
dx 

~{x, b)-a2(x)<Hx, b) = B2(x) 
dy 

15.15. Consider 

x - y + Ix + 3ex2 + 2ey2 = 0 

y + x + 25y + 4exy - 0 

when 6 = 1 + ea and e « 1. Use the method of multiple scales to show that 

x = Ax{Tx)eiT* + A2e2iT° + C . C . + - • • 

where 

A2 = \ioA2 - \iA2 

A \ = -| z'ovl j - /v41 >4 2 

15.16. The free response of a two-degree of freedom system is governed by 

tii +-|«2 + oux = e u , u 2 

"2 " i " i + i " 2 

where e « 1 and 5 = \ + ea. Show that the equations describing the complex 
amplitudes are 

A'I = \ioA 2 + |/4] 

y4 i = -gJOVl i ~ \A2A i 
15.17. Use the method of multiple scales to determine the equations describing 
the amplitudes and the phases of the system 

UX + OJXUX = <X\U2U3 

112 + to 2 u 2 = a 2 u t u 3 

113 + co 3 u 3 = a 3 u ,u 2 
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when CO3 «s eu, + CJ2. 

15.18. Consider the parametrically excited system of Section 15.3. Determine 
the equations describing the complex amplitudes when ( a ) ft* 1, ( b ) f t * 2 , 
und ( c ) ft 4. 

15.19. Determine a first-order expansion for the eigenvalues o f 

u" + Xu = ef(x)u 

u(0) = 0 « ( 1 ) = 0 

when e « 1. 

15.20. Consider the eigenvalue problem 

I X + €/(JC)1U = 0 

u(0) = 0 u ' ( l ) = 0 

Show that 

X = in + j ) V - 2e f fix)sin2 in + \)nxdx + - -
Jo 

15.21. Consider the problem 

K / w + 5 U " + lX + e/U)J« = 0 e « l 

M(0) = u"(0) = tt(?r) = u"(it) = 0 

Show that when X « 4 

. X = 4 + eX, + • • • 

where 

X? + (/u + /22A, + /W22 - /fa
 a 0 

2 r w 2 r " 
/u = — I /(JC) s in 2 JC dx /22 s 8 — I / ( J C ) s in 2 2JC dx 

* Jo ^ Jo 

2 r 
fn = — I fix) sin JC sin 2JC dx 

15.22. Determine the solvability conditions for 

Piix)y" + Piix)y + pnjx)y=fjx) 

subject to the boundary conditions 

( a ) >>(0) = p\ yil) = fa 

( b ) / ( 0 ) = <*I.H0) + p'1 / ( D = a 2 . K l ) + 02 

( c ) j ' ( 0 ) = a , , / ( ( ) ) + a , 2 / ( l ) 
. v ( l ) « a 2 l / ( 0 ) + a 2 2 / ( l ) 
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dx3 \ dx3 J dx2 \ dx2 / dx \ dx J 
+ A0y = 0 

15.26. Prove that any homogeneous self-adjoint differential equation of order 
2m can be written in the form 

dm f dmy\ dm~y ( dm'1y\ d ( dy\ 

\A-7x^) + d 7 ^ S ? H +"-+Tx r Tx) = ° 

15.27. Determine the solvability conditions for 

Ps(x )yv + P 4 ( x ) / " + p3(x)y"' + p2(x)y" + P i ( x ) / + p0y - fix) 

r ( 0 ) = j3, / ( 0 ) = /32 y"(0) = B3 M l ) = 04 y'U) = Bs 

15.28. Consider the eigenvalue problem 

(pis) = X f (COS(J + O + eKiis. t)\<t>(t)dt e « l 
Jo 

Show that 

00 ) = cos S + • • • 0 ^ = sin s + *" • 

X ( , ) = 2 7 T " 1 + eX<[> + • • • X ( 2 ) = -2n-1 + eX<J> + • • • 

Determine X ^ . 
15.29. Determine a first-order uniform expansion for 

0 (5 ) = X f Vr* s 2 1 2 + eKiisTDWOTdi—<r« 1 

15.30. Determine a first-order uniform expansion for 

0 U ) = X / [s - t + eKtis, /)|0(/) e « l 
Jo 

1 S.23. Determine the conditions under which 

p3y"' + Piy" + P\y +p<>y s o 

is self-adjoint. Ans. p 2 - \p'3, Po • \ ip3 - p[ + p\) 

15.24. Determine the solvability conditions for 

p3ix)y" + P 2 ( * )y " + P i U ) / + Po(x)y - fix) 

subject to the boundary conditions 

(a) _v(O) = 0, >'(O) = 0 2 yil) = B3 

(b) / ( 0 ) » auyiO) + a , 2 / ( 0 ) + ai3y(l) + a , 4 / ( l ) 
/ ' ( 1 ) = a 2 tyiO) + ot2 2 / ( 0 ) + a 2 3 . K 1) + a 2 4 y'i 1) 

0 « a3lyi0) + o r 3 2 / ( 0 ) + a33y( 1) + a 3 4 / ( 1) 
15.25. Prove that any homogeneous self-adjoint sixth-order differential equa
tion can be written in the form 
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15.31. Show that 

d d v 
L(y) = — = 0 

v3dx u2dx u, 

is self-adjoint if and only if v3 = ±ut. 
15.32. Show that 

d d d y 
Uy) = — = 0 

vAdx v3dx v2dx y , 

is self-adjoint if and only if 

» 4 = ±u, v3 = ±v2 

15.33. Show that 
, , d d d d y _ 

L(y) = ~ - 0 
vn+xdx v„dx o3dx v2dx vt 

is self-adjoint if and only if 

« « * i = ± W i vn = ±u2 v n . x = ±u 3 • • • 

15.34. Consider the problem 

a V i i a V 2 . n 

—_ + + — —- + co 0 = 0 
dr2 r dr r 2 35 2 V 

30 
—- - a0 = 0 at r = a + ef(8) 
or 

30 
— = 0 at r = b+ eg(6) 
or 

Determine a first-order expansion for co. 

15.35. The incompressible flow past a wavy wall is governed by the mathemati
cal problem 

V 2 0 = O 

30 , 30 
—s -ek—-sin kx at .V = €COSKJC 

oy ox 

<f> -*• Ux as y -*• 0 0 

Show that 

0 • U[x + e sin kxe~ky + \e2k sin 2kxe~2ky + • • -J 

Discuss the uniformity of this expansion. 

15.36. The inviscid incompressible flow past a slightly distorted circular body is 
governed by 
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3*0 I 30 1 3 2 0 ^ 
—Z_ + - + — — f « o 
3r2 r dr r 2 30 2 

0-+c/rsin0 as r -• °° 

0 = 0 at r = a( l - e sin2 0 ) 

Show that 

0 = t 7 ^ r - y j s in0+ | e t / ^ - s i n 0 - sin 30 J + ••• 

Discuss the uniformity of this expansion. 

15.37. Determine the solvability conditions for 

V 4 0 - X0=F(r,0) 

0(a, 0 ) = O 0(/3, 0 ) = O 

30 30 

f : ( f l . 0 ) = /(0) T^ ( * > . 0 ) = * ( 0 ) 
3r dr 

15.38. In analyzing the nonparallel two-dimensional stability of incompressible 
flows past a sinusoidal wall, one encounters the inhomogeneous problem 

iau + v - fi(y) 

-/(co - aU)u + U'v + iap - - (u" - a2u) = /jOO 

-/(co - aU)v + p - - (v" - ot2w) = f^y) 
R 

w(0) = c, i*0) = a 
u, v -*• 0 as ^ -> oo 

where 17 and/„ are known functions of y, where u>, a, R, and c„ are constants, and where the 
prime indicates the derivative with respect to y. When the homogeneous problem has a 
nontrivial solution, show that the solvability condition is 

-£ I 0 n / n ^ - - ^ C , 0 a ( O ) - ^ C 2 0 3 ( O ) - C J < p , ( O ) 
n-\J0 K A 

where the 0 n satisfy the adjoint problem 

to0a - 0'j - 0 

/O(0| - i(co - at7)02 - — (02' - ac202) * 0 
R 

-0'. + t/'02 - i (co - « (/ )0 3 - ^ (03 - a 2 0 3 ) - 0 
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0 2 ( O ) « 0 3 ( O ) = O 

<t>n -+ 0 as y -*oo ,1 = 2 , 3 

Hint: Multiply the governing equations by 0 , , 0 3 , and 0 3 , respectively;integrate 
each by parti from y • 0 to y • to transfer the derivatives from u, v, and p t o 
the 0n; add the resulting equations; collect coefficients of u, v, and p ; fol low the 
steps in Section 15.13. 

15.39. In analyzing the stability o f growing three-dimensional incompressible 
boundary layers over flat surfaces, one encounters the inhomogeneous problem 

iau + /0w + v -fi(y) 

-itou + U'u + iap - — (u" - k2u) = f2(y) 
R 

-icov + p - (v" - k2v) = f3(y) 
A 

-itow + i'p> + W'v - - ( V - k2 w) = / 4 ( y) 
A* 

u = u = w = 0 at >> - 0 

u, v, w -*• 0 as y -* <» 

where to • co - aU - f$W and k1 = a 2 + 0 2 . Here (/, IV, and /„ are known func
tions o f y, and a, 0, /?, and co are constants. When the homogeneous problem has 
a nontrivial solution, show that the solvability condition is * 

£ f / « 0 „ * > = O 

where the 0„ satisfy the adjoint problem 

ia<p2 + /004 - 03 = 0 

tOr0, - JCO0J - (0 j - fe202) = 0 

-0 ' l + t7'02 " ' " 0 3 " ^ (03 " * 2 0 3 ) + Jf '0 4 = 0 
A 

J001 - JCO04 " ^ ( 0 4 " * 2 0 4 ) = 0 
A 

02 - 03 = 04 = 0 at y = 0 

4>„-*0 as y -+oo ,, = 2 , 3 , 4 
15.40. Consider the eigenvalue problem 

0xx + <t>yy + A0 * e x 2 0 
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0(x, 0) = <t>(x, n) = 0 (0, y) = 0Or, y) = 0 

Determine first-order expansions when X is near 2 and 5. 
15.41. Consider the problem 

V 2 0 + X0 " e/"(or, y, z)<p 

with 0 vanishing on the surfaces of a cube of length if. Determine first-order 
expansions when A 3 and 6 if (a) /= x1 and ( b ) / = x2y. 



APPENDIX A 

Trigonometric Identities 

A . l . Basic Indenttties 

sin2 a + cos2 a = 1 

sin a cos a 1 
tan a - cot a - tan a = 

cos a sin a cot a 

sin (a ± 0) - sin a cos 0 ± cos a sin 0 

cos ( a ± 0) - cos a cos 0 T sin a sin 0 

Adding the equations in (A3 ) , we have 

sin a cos 0 = ^ [sin (a + 0) + sin (a - 0)] 

whereas subtracting the equations in (A3 ) , we have 

cos a sin 0 * \ [sin (a + 0) - sin (a - 0)] 

Similarly, adding and subtracting the equations in (A4 ) , we have 

cos a cos 0 * \ [cos (a + 0) + cos (a - 0)] 

sin a sin 0 = \ [cos (a - 0) - cos (a + 0)] 

It follows from (A2) through (A4) that 

„. sin (a ±0) sin a cos 0 ± cos a sin 0 
tan (a ± 0) » b — * -

cos (a ± 0) cos a cos 0 7 sin a sin 0 

Dividing both numerator and denominator by cos a cos 0, we have 

tan a ± tan 0 
tan (a ± 0) 

v P J l * t a n a t a n 0 

Similarly, 

472 
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v cot a cot fl + 1 y ^ 
cot a±/3) = P ( A9 ) 

cot 0 ± cot a 

We let 

a + 0 = x and a - 0 = y 

so that 

a = | ( x + y ) and /3 = | (x - jv) 

Then, (A5) through (A7) can be rewritten as 

~ . * +^ x - y 
sin x + sin v = 2 sin cos 

2 2 
X + V x - V 

sin x - sin y = 2 cos sin (A10) 
2 2 

x + y x-y 
cos x + cosy = 2 cos cos 

2 _ 2 

* x + y x - y 
cosy - cosx = 2 sin sin ( A l l ) 

2 2 

Putting 6 = a in (A5 ) gives 

sin 2a = 2 sin a cos a (A12) 

whereas putting B = a in (A7 ) gives 

cos 2a = 2 cos2 a - 1 

cos 2a = 1 - 2 sin2 a 

which, upon adding, yield 

cos 2a = cos2 a - sin2 a (A14) 

To express sin 3 a in terms of sin a, we put B = 2 a in (A3) and obtain 

sin 3a = sin a cos 2a + cos a sin 2a 

Using (A 12) and (A 13), we have 

sin 3a = sin a ( l - 2 sin2 a ) + 2 cos a sin a cos a 

But cos2 a = 1 - sin2 a; hence 

sin 3a = sin a - 2 sin3 a + 2 sin a ( l - sin2 a ) 

or 

sin 3a = 3 sin a - 4 sin3 a (A15) 

(A13) 
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B u t / 2 - - 1 , h e n c e 

i0 62 id3 0 4 id5 e6 

eie = \ + — _ _ _ + — + — - — + 
1! 2! 3! 4! 5! 6! 

which can be rearranged into 

.„ / 62 64 e6 \ I 0 3 6s \ 
e ' ° = 1 _ ^ + — - ^ + . . . ) + / ( 0 - — + — + . . . (A19) 

\ 2! 4! 6! / \ 3! 5! / v J 

Comparing the series in the parentheses with (1.47) and (1.48), we conclude 
that 

ei9 = cos $ + / sin 6 (A20) 

Taking the complex conjugate of (A20) gives 

e"10 = cos 6 - i sin 6 (A21) 

which, upon solving for sin3 o, gives 

sin3 a = £ (3 sin a - sin 3a) (A16) 

mi identity that ii frequently used. Similarly, we can express cos 3a in terms of 
cos a as follows. We put 0 " 2a In (A4) and obtain 

cos 3 a - cos a cos 2a - sin a sin 2a 

which, upon using (A12) and (A 13), becomes 

cos 3a = cos a(2 cos 2 a - 1) - 2 sin a sin a cos a 

= 2 cos 3 a - cos a - 2 sin2 a cos a 

= 2 cos 3 a - cos a - 2(1 - cos 2 a) cos a 

according to (A12). Hence, 

cos 3 a = 4 cos 3 a - 3 cos a (A17) 

or 

cos 3 a = £ (3 cos a + cos 3a) (A18) 

which is frequently used. 

A.2. Complex Quantities 

Lett ingx-id, where i = >/-T, in (1.49), we have 

/a _. t ie , ( f t ) 2 Go? , Q0) 4 Qg)5 , (*-e)6 , 
1! 2! 3! 4! 5! 6! 
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-Li 
12/ 

s i n 3 0 = *--'"') 
8 / 3 ^ e ' 

- ~ ( e 9 W - 3 e w + 3 e - w - e - * w ) 
8/ 

~ ~ 4 2/ * 2/ 

4 w " ^ ~ ? = 1 sin 0 - A sin 30 

in agreement with (A16) . 
To expand cos" 0, for a general positive integer n,in a Fourier series, we note 

that 

cos" 0 - [ j (ew + e - " ) ] " = ( e " + e " " ) " 

Letting a = exp (i'0) and b = exp (- i$) in (1.39b), we have 

(eie+e~i9Y^ V — j(n-m)e -ime A n ! / W M W 
i r . m ! C n - m ) ! ^ m!(ii - m)l 

Adding (A20) and (A21) , we have 

cos6 = \(eie + e~ie) (All) 

Subtracting (A21) from (A20), we have 

sind=~(ei0 - e-'0) (A23) 

Next, we show how one can use (A20) through (A23) to express cos" 0 and 
sin" 0 in Fourier series. It follows from (A22) that 

cos3 0 * [| (ei0 + e-id))3 - ± (ei9 + e~i9)3 

= i ( e 3 , 9 + 3 e , f l + 3 e - , l , + e - 3 i e ) 

according to the binomial theorem. Rearranging, we have 

cos3 0 - | ( e 3 / * + e-3ie) + | (eid + e'19) 

* | • 2 cos 30 + | • 2 cos 0 

according to (A22). Hence, 

cos3 0 » J (cos 30 + 3 cos 0) 

in agreement with (A18). It follows from (A23) that 
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= elne + nei(n'2)d + ! ) <.'<«-«>' +... + n^n~ 
2! 2 ! 

X e-Kn-4)e + ne-ito-2)6 + e - /ne 

Hence, 

(A24) 

and 

1 T n(n — 1^ 
cos" 0 - cos nd + « cos (n - 2)0 + K } cos (n - 4)0 

w ( * i - l ) ( n - 2 ) . 1 , 
+ ^cosC/ i -6 )0+ • • f o r o d d n -

i r wfw ~ D 
c o s " 0 3 JJ^T c o s n d + w c o s (« " 2)0 + cos (« - 4)0 + • • • 

N * « )K i » ) ' ] f ° r e V e n f l ( A 2 5 ) 

Sirnilarly, to expand sin" 0, we note that 

* f [5 -«-»)]" 

Letting a * exp (/0) and b * - exp (- /0) in (139b) , we have 

m ^ 0 m ! ( « - m ) ! 

Then, when « is even, 

( c w - e-l9f **ein9 - ne^-V9 + " ^ ^ g * 1 " 4 ) * + • • • 



2! 

Hence, 
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sin" 0 = ~ ~ | cos nd - n cos (n - 2)0 + ^ cos (w - 4)0 

«(« - \)(n - 2) 
— ~ cos (n- 6)6 + 

+ r _ n ( i/ 2 )n "1 
V ; 2(1 « ) ! ( * « ! ] 2 ( i « ) ! ( * » ! ) 

When /t is odd, 

, for even n (A26) 

(eie - e " 1 ' * ) " =eine - neK"~2)9 + " ^ e * " - 4 ) * + •. 

- ^ L l i } e - / ( n - 4 ) 9 +ne-i(n-2)0 _ e-/ne 

= e / n d - e"" 1 * - / i [ e / ( , , " 2 ) d -

+ 1 ^ [ e ' ( « - 4 ) 0 _ - 4 ) 0 ] + . . . 

Hence, 

sin" 0 = 1 

( 2 i ) 

ft (ft ~ 11 
sin n0 - n sin (/i - 2)0 + 2 i s i n ^ " 4 ^ 

« ( « _ . _ ! ) ( « - 2) ^ ^ _ ^ + for odd n (A27) -
3! 

Putting n - 4 in (A25) , we have 

cos4 0 - | (cos 4 0 + 4 cos 20 + 3) 

Putting n = 5 in (A24), we have 

cos5 0 - (cos 50 + 5 cos 30 + 10 cos 0 ) 

Putting n * 4 in (A26) , we have 

sin4 0 = \ (cos 4 0 - 4 cos 20 + 3) 

Putting n - 5 in (A27) , we have 

sin5 0 = jjr (sin 50 - 5 sin 30 + 10 sin 0 ) 

+ { K « l i ) [ e / ( M - 4 ) a + e - / ( , I - 4 ) e ] + . . . 
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To express cos" 0 sinm 0 in a Fourier series, one can either use (A22) and 
(A23) directly or first express it in powers of cos 0 or sin 0 and then use (A22) 
and (A23). 

A .3 . Integrals 

J*cos ax cos (Sx dx - \J cos (a + /?)* dx + \ J* cos (a - 0)x dx 

(sin (a + 0)x sin (a - (i)x 
2(a + 0) 

I sin 2 ax , 
4a 44 

2 ( a - 0 ) 
0=£a 

0 = a 

J*sin ax sin |3x dx = ^ J*cos (a - 0)x dx - cos (a + 0)x dx 

(sin (a - ft)x sin (a + p)x 
2(a-/J) 2(a + 0) 

IT X -
sin 2ax 

4a 

0 * a 

0 = a 

J~sin ax cos 0x dx - \J sin (a + 0)x dx + |J* sin (a - 0)x dx 

cos (a + /3)x cos (a - 0)x 
2(a + 0) 

cos 2 ax 

4a 

2 ( a - 0 ) 
0 * a 

|3 = a 

cos" 0 sin 6 dd = -

sin" 6 cos 0 d0 * 

cos 
,i + l 

sin"* 1 6 

n + l 

Integrating both sides of each of (A24) through (A27), we obtain 

J l r 1 ft n (ft — 11 
cos" Odd = • — r - sin nd + — - sin (n - 2)6 + —\ ~r sin (n 

2" 1 In , i - 2 2!(,i - 4 ) 

(A28) 

(A29) 

+ v ' S in (,t - 6)0 + • • • for odd ,t 

cos" 6dd = 

3!(, i- 6) 

1 Tl . „ n . . «(,? - 1) . . 
- s in , i0 + — - s i n ( n -2 )0 + —7 ^s in ( , i 
n n-2 2 ! ( , i - 4 ) i « - i 

(A30) 

(A31) 

(A32) 

4)0 

(A33) 

•4)0 
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2 ( i « ) ! ( ! « ) ! _ 

for even n 
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(A34) 

Ode iL L s i n n 6 _ JL- s i n ( n - 2 ) e + " ^ sin (n - 4)6 
2 

+ • • • + 

n- 2 2\(n-4) 

sin" 6 dd = 

2 ( i « ) ! ( i « ) ! 

J —f - i (2/r" 1 L « 
0 

2!(w - 4 ) 

It follows from (A33) through (A36) that 

I cos" 0 c*0 = 
Jo 

for even n 

cos « 0 + cos (n - 2)0 
« - 2 

cos (n - 4)0 + 

1 K!T T 

J[ s in"0d0 = <{ ( - i ) ^ 2 > % ! r r 

for odd « 

if « i s odd 

if n is even 

if n is odd 

if n is even 

(A35) 

(A36) 

(A37) 

(A38) 



APPENDIX B 

Linear Ordinary-Differential Equations 

A differential equation is an equation connecting the values of a function (called 
the dependent variable), the derivatives of this function, and certain known 
quantities. If the dependent variable is a function of a single variable (called the 
independent variable), the differential equation is called an ordinary-differential 
equation. If the dependent variable is a function of two or more independent 
variables, the differential equation is called a partial-differential equation. Thus, 
a general ordinary-differential equation is an equation of the form 

td«u d"~lu du"'2 d2u du \ 
F \ Z ? ' ^ ^ ' - ' ^ ^ x ) a 0 ( B 1 ) 

where the order of the highest derivative is caUed the order of the differential 
equation. Thus, ( B l ) is of order n. 

An ordinary-differential equation of order n is said to be linear, if it is linear 
in the dependent variable u and its derivatives u\ u",... ,u^"~2\ u^"~l\ u^"K 
Thus, the most general linear ordinary-differential equation of order n has the 
form 

p ^ t i ; + P « - » ( x ) : r ^ r + ' ' • + M * ) ; r + P o ( x ) « =/ (* ) (B2) 
dx" dx 1 dx 

where the pm, for m = 0 ,1 , 2 , . . . , n, and / are known functions of x. If f(x) = 
0, (B2) is called a homogeneous equation; otherwise, it is called an inhomogene
ous equation. 

Suppose that the pm(x), for m = 0 ,1 , 2 , . . . , n, are continuous functions on 
an interval / » (JCIA < x < b) that includes the point x0 and suppose that p„(x) 
does not vanish at any point in /, then for any real numbersa0 ,or, , . . . , a n - i , 
there exists a unique solution u(x) that satisfies (B2) everywhere in / and satis
fies the initial conditions 

u(x0)=oc0 u'(x0) = aJt. .. ^ " ' V o ) = 
480 
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This is a statement of the fundamental existence theorem of linear ordinary-
differential equations. 

It is convenient to express (B2) in operator form. To this end, we let D denote 
the differential operator d/dx. Thus, 

du 
Du = — = u' 

dx 

D2u=D(Du) = D(u') = u" 

Dnu=D(Dn-1u) = D[u("-i)] = 

Moreover, we define D°u to be u. Hence, (B2) can be rewritten as 

pnD"u +pn-iD"-%u+- + pxDu+p0D°u =/ ( * ) (B3) 

or in the convenient abbreviated form 

L(u)=f(x) (B4) 

where the operator L is defined by means of the relation 

L =pnD" + pn.xDn~l + •• + pxD + pQD° (B5) 

The operator L is called a linear operator and it has some interesting properties. 
If c is a constant and u is any function that possesses at least n derivatives, then 

L(cu) = cL(u) (B6) 

because 

L(cu) =pn(cu)W + p „ _ l ( « < ) ( ' , ~ l ) + • • • + Pt(cu)'+p0(cu) 

= pncu^ + " ' + cpxu' + p0cu 

= c[pnuin)+pn-1u(n-1)+-+p1u' + p0u] = cL(u) 

If U\ and u2 are any two functions that possess at least n derivatives, then 

L(ux +u1)-L(ax)+L\\u2) (B7) 

because 

L(ux + u2) =pn(ux + w2) ("> + p„.1(ul + u2)(n~l) + • • • + px(ux + u2y 

+ Po(Mx+U2)=Pn[u\n) + +Pn - l l" i , , " 1 ) +^" 1 ) ] +••• 
+ pl(u\ +U'2)+P0(UX + U A ) » [pnU{

x
n) +pn_lU\n-X) + 

+ Pl"'l + Po" l ] + [Pn"™ +Pn-iuin~l} + • • +PXU2+p0u] 

= L(ux) + L(u2) 

It follows from (B6) and (B7) that 
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L(cxux + c2u2)=cxL(ux) + c2L(u2) (B8) 

and in general that 

L(cxux +c2u2 + • • • +cmum)«clL(ul) + c2L(u2)+ • • +cmL(um) (B9) 

where the C/are constant. 

B. 1 . Homogeneous Equations 

Putting/(x) = 0 in (B4) yields the homogeneous nth order ordinary-differential 
equation 

L ( « ) = 0 (BIO) 

If Ui is a solution of (BIO) and c is any constant, then cux is also a solution of 
(BIO) because 

L(cux)=cL(ux) = 0 

PRINCIPLE OF SUPERPOSITION 

If «i and u2 are two solutions of (BIO) and cx and c2 are any two constants, 
then cxux +c2u2 is also a solution of (BIO) because 

L(cxux +c2u2) = cxL(ux) + c2L(u2) = cx -0 + c2 -0 = 0 

In general, if « , , u2,..., um are solutions of (BIO) and*Ci,c2, • • • >cm are any 
constants, then 

C , M , +c2u2 + - • +cmum 

is also a solution of (BIO) because 

Z , ( C , M , +c2u2 + • • +cmum) = cxL(ux) + c2L(u2)+ •• +cmL(um) 

= cx •0 + c2'0 + - ' + cm -0-0 

This property is usually referred to as the principle of superposition. The func
tion cxux + c2u2 + • • • + cmum is usually referred to as a linear combination of 

LINEAR INDEPENDENCE 
Let-t* t ( j f ) R 4#2( jc) , ^rUfnix} be a^set^of Junctions defined on the interval 

/ = [a, b]. This set is said to be linearly dependent, if there exist constants 
C j , c 2 , . . . , c m , not all zero, such that 

c,w,(x) + c2u2(x) + • • • + cmum(x) = 0 (Bl 1) 

for all x in /; otherwise, this set is said to be linearly independent. The restriction 
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that not all the ct are zero is essential because ( B l l ) holds for any set if all the 
Cj are zero. For example, the functions 2x - 1 and 6x - 3 are linearly dependent 
because 

- 3 - ( 2 x - 1) + 1 - ( 6 J C - 3 ) 3 0 

However, the functions 2x - 1 and 5x - 3 are linearly independent because it is 
impossible to find two constants cx and c2, not both zero, such that 

cx(2x- l) + c2(5x- 3) = 0 

An alternative but important method of testing for the linear dependence or 
independence of a set of functions W,(JC), u2(x),... , um(x) involves their 
Wronskian determinant, which is defined by 

W=W(ux,u2,...,um) = 

, ( m - l ) 

U2 

i 

U2 

Am-l) 

U 

i 

( m - I ) 

(B12) 

If the functions ux(x),u2(x),... ,um(x) are linearly dependent on the interval 
/, then there exist constants c,, c 2 , . . . , cm, not all zero, such that 

CXUX + c2u2 + 

which, upon differentiation (m - 1) times, yields 

C\UX + c2u'2 + • • 

cxux +c2u2 + • • 

+ cmum = 0 

+ cmu'm = 0 

+ cmu"m = 0 

(m - 1 ) . (m - l ) . 
CXU\ +C2U2 ' + + C M W R _ i ) = o 

(B13) 

(B14) 

(B15) 

(B16) 

At each point x in the interval /, (B13) through (B16) constitute a system of 
homogeneous linear algebraic equations for cx,c2,... , c m . Since thee, are not 
all zero, the determinant of their coefficient matrix must be zero. But this deter
minant is the Wronskian determinant. Hence, W(x) - 0 at every point in /. If the 
Wronskian determinant is not zero at any point in /, then (B14) through (B16) 
have only the trivial solution c, = c2 = • • • = cm = 0, and the functions ux(x), 
u2(x),. .. ,um(x) are linearly independent. Hence, a set of functions is linearly 
dependent in / if and only if their Wronskian determinant vanishes at every 
point in /. For example, the Wronskian determinant of the functions 2x - 1 and 
6x - 3 is 

W = = 0 
2x - 1 6x - 3 

2 6 

and hence, they are linearly dependent. On the other hand, the Wronskian deter-
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minant of the functions 2x - 1 and 5x - 3 is 

\2x-l 5 x - 3 | 
= 1 

and hence, they are linearly independent. 

GENERAL SOLUTION 
Equation (BIO) has no more than n linearly independent solutions. For sup

pose that Ui(x), u2(x),..., uN(x), where N > n, are solutions of (BIO), then 

W(uuU2,...,u„,... ,uN) 

u2 u„ 
i 

" 1 U2 

u2 

.AN-I) \ 
u2 

:: „(»'-> 

U'N 

(B17) 

is zero because (BIO) can be used to express the (n + l ) th row as a linear com
bination of the first n rows. Hence, the solutions H i ( x ) , U 2 ( X ) , . . . ,uN(x), for 
N > «, are linearly dependent. 

Next, we show that (BIO) has exactly n linearly independent solutions on the 
interval / . To this end, we note that the fundamental existence theorem shows 
that (BIO) has n unique solutions ut(x), u 2 ( x ) , . . . , u„(x) that satisfy the initial 
conditions 

ui(x0) - 1 u\(x0) = u'iTxo) = • • • = uin'l\x0) - 0 

u2(x0) = 0 u'2(xQ) - 1 «5(x 0 ) = • ' = uin'l\x0) - 0 

u3(x0) - u3(xo) = 0 ul(x0) - 1 «3"(*o) « • • • - iij"" ! ) ( x 0 ) = 0 

«mC*o) = • • = 2 ) ( x 0 ) - 0 u i T ^ W - 1 

« £ , ) 0 t o ) - - " a « £ " , ) 0 co ) -O 

"„(*o) -«;(*o) - • • • - ^ " " " W - 0 « f " ' W • 1 
It can be easily shown that the Wronskian determinant of these n solutions is 
unity at x 0 . Thus, the Wronskian determinant of these solutions is not zero 
everywhere in / , and hence, they are linearly independent. 

Any set of n linearly independent solutions of (BIO) is called a fundamental 
set and any linear combination of these solutions is a solution of (BIO). Thus, 
if U | ( x ) , u 2 (x) un(x) is a fundamental set of (BIO), then 

u(x) • c,Mj(x) + C 2 M 2 ( X ) + • • • + c„u„(x) (B18) 

file:///2x-l
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for any constants c , , c 2 , . . . , c „ , is a solution of (BIO) according to the prin
ciple of superposition. Since any solution of (BIO) can be obtained from (B18) 
by a proper choice of the cm, (B18) is called the general solution of (BIO). 

Before closing this section, we derive an expression that relates the value of 
the Wronskian determinant of a fundamental set at any point x in / to its value 
at any other point x0. To this end, we write 

(B19) 

Differentiating (B19) with respect to JC and using the property of determinants, 
we have 

Ul u2 U„ 

Ux 1 U„ 

u2 

t 
U\ i 

" 2 

t 
ux 

u2 

1 
Ux 

t 

u2 "« + 
n n 

Ui 

<»-!> 
1 

( " -
« 2 

" l " 2 u„ 

ujf-l> U2 

• • + 
t 

" i 

« * • 

i 
U2 

u2 

U„ 

Unn-l) 

(B20) 

All determinants in (B20) except the last one vanish because of the presence of 
repeated rows. Hence, 

Ul 

Ux 

ux 
(") 

u2 

u2 

u2 

Using (BIO) to express the uj^ in terms of um,u'm, 
erties of determinants, we rewrite (B21) as 

(B21) 

Um'1^ and using prop-

Ux " 2 Un 

w' = -Pn-1 i 
Ul 

« 2 Un 

Pn 
ui"-» U2 

Ux U2 u„ 

Pn-2 
t 

Ux 
> 

u2 
Un 

Pn u<r-*> 
up'* 

" 2 

" 2 
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El 
Pn 

U2 

i 
Ml 

t 
U2 

M l Ma 

M,i 

M„ 

>-*) (B22) 

All the determinants in (B22) except the first one vanish owing to the presence 
of repeated rows. Moreover, comparing the first determinant in (B22) with that 
in (B19), we conclude that they are the same. Hence, 

Pn-

Pn 
W (B23) 

whose solution is 

W(x) = W(x0) exp jfX P-*£& dr 

which relates W(x) to W(x0). 

(B24) 

B.2. Inhomogeneous Equations 

Equation (BIO) is called the associated homogeneous equation of (B4). It 
turns out that we can solve the inhomogeneous equation (B4) if we can find the 
general solution of the associated homogeneous equation and if we can also find 
just one particular solution of (B4). Specifically, if U i ( x ) , H 2 ( X ) , . . . . un(x) are n 
linearly independent solutions of the homogeneous equation (BIO) and if up(x) 
is a particular solution of (B4), then the general solution of (B4) is of the form 

u — C\U\ + c2Mj + * * * + cniin + Up (B25) 

where the c„ are constants. The function 

uc = + c 2 " 2 + • • • + c„u„ (B26) 

is called the complementary function. Thus, the general solution of (B4) is the 
sum of a particular solution and the complementary function. First, we verify 
that every solution of the form (B25) is a solution of (B4). Since L(um) = 0, for 
m = 1 , 2 , . . . , « , and L(up) = / , we have 

L(c ,w, + c2u2 + • • • + cmum + up) = c, L(ut) + c2L(u2) + • • • + cmL(um) 

+ L{up)=f 

verifying that (B25) is a solution of (B4). Next, we show that every solution of 
(B4) is of the form (B25). Let u(x) be any solution of (B4), then 

/-GO-/ 
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and since 

/,(«„)=/ 
then, 

L(u - up) »L(u) - L(up)»f- / - 0 

Hence, u - up is a solution of the associated homogeneous equation L(v) = 0. 
Consequently, 

o * u - Up = c,u, + c 2 u 2 + • • • + c m u m 

which yields (B25). 
If 

L(u) = / ( I ) ( J C ) + f(2\x) + • • • + /<*>(x) (B27) 

and if 

M«J 0 ] S / ( 0 W (B28) 

then, 

up*u™ + ufU.-- + uP (B29) 

because 

= / ( 1 ) ( x ) + / ( 2 ) ( x ) + • • • +/<*>(x) 

B.3. Solutions of Homogeneous Equations with Constant Coefficients 

In this section, we determine the general solutions of homogeneous equations 
with constant coefficients, that is, 

L(u) = 0 (B30) 

where 

L -Dn + />„. xDn' 1 + pn. 2Dn~2 + • • • + p2D2 + p ,D + p0 (B31) 

and the pn are constant. We associate with the operator L a polynomial P, where 

/ W - ^ + A i - i * " " 1 + P n - 2 ^ * 2 + ' - + ^ s 2 + P , s + Po (B32) 

and write 

P(D) = iy+pn„lDn'1 + Pn^D"-2 + - - + p2D2 + ptD + p0 (B33) 

We call a polynomial operator and rewrite (B30) as 

P{D)u = 0 (B34) 
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Since 

Desx**se'x Z ) V * = s V x ••• Dmeax^sme'x 

it follows that 

P{D)esx = P(s)esx (B35) 

The polynomial P(s) is called the auxiliary polynomial associated with the 
operator polynomial P(D). It follows from (B35) that if sm is a root of Pis), 
then exp (smx) is a solution of (B34). Hence, if P(s) has the n distinct real roots 
* i » h , . • . , s„, each of the functions 

e'ix,e**x,... ,e*nX 

is a solution of (B34). Since they are linearly independent, the general solution 
of(B34)is 

u = cxe'*x + c2eSlX + - • +cnes"x (B36) 

where the c„ are constants. 
For example, we consider 

un - 3u + 2u = 0 (B37) 

which may be rewritten as 

(D2 - 3£> + 2)w = 0 

The associated auxiliary polynomial is 

s2 - 3s + 2 = 0 - 2) (s - 1) 

which has the roots s = 1 and 2. Hence, each of the functions exp (x) and exp * 
(2x) is a solution of (B37). Since they are linearly independent, the general 
solution of (B37) is 

u = cxex + c2e2x 

As a second example, we consider 

u" + 2u" - u' - 2u * 0 (B38) 

whose associated auxiliary polynomial is 

s3 + 2s2 - s - 2 = (s - 1) (s + 1) (s + 2) 

It has the roots s B 1 , - 1 , and - 2 . Hence, each of the functions 
ex e-x e-ix 

is a solution of (B38). Since they are linearly independent, the general solution 
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u — cxex + c2e~x + c 3 e 

We should note that, in the general case, the roots of the associated auxiliary 
polynomial are neither all real nor all distinct. Next, we discuss these other cases 
starting with the case of complex roots. 

THE CASE OF COMPLEX ROOTS 
We consider a second-order equation whose associated auxiliary polynomial 

has the complex conjugate roots n + /co and /i - /co, where n and co are real. We 
note that if one of the roots is complex, the other root must be its complex 
conjugate because the auxiliary polynomial is real. Thus, each of the functions 

e(n+iu>)x m d e(n-io>)x 

is a solution of the equation. Since these solutions are linearly independent, the 
general solution is 

u = c x e ^ + i u j ) x +c2e^~iw)x (B39) 

Using the identities 

el03X - cos cox + / sin cox 

we rewrite (B39) in real form as follows: 

u = cxeM*(cos cox + / sin cox) + c 2 e M * (cos cox - / sin cox) 

= etlx[(cx + c2) cos cox + i(cx - c2) sin cox] 

or 

u = e^iA cos cox + B sin cox) (B40) 

where A = cx +c2 and B = i(cx - c2) are arbitrary constants that can be con
sidered real. Equation (B40) shows that each of the real and imaginary parts 
of either exp [(u + /co)x] or exp [(jx - ioSpc] is a solution. 

Equation (B40) can be rewritten in one of the following convenient forms: 

u = ae»x cos (cox - 6) (B41) 

or 

u = ae^ sin (cox + 6) (B42) 

where 

a = (A2 +B2Y12 i3 = t a n _ 1 - 6 = \ir - 0 
A 

For example, we consider 
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u" + co2
0u = Q (B43) 

whose associated auxiliary polynomial is 

s2 + col 

It has the roots s = ±ico0. Hence, each of the functions exp (ico0x) and exp • 
(-icooJc) is a solution of (B43); equivalently, the real part cos coQx and the 
imaginary part sin co0x of exp (ico0x) are solutions of (B43). Hence, the general 
solution of (B43) can be expressed in one of the following forms: 

u — A cos co0x + B sin co0x 

or 

u - a cos (co0x - 0) 

or 

u = a sin (co0x + 9) 

As a second example, we consider 

u + 2u + 5M = 0 (B44) 

whose associated auxiliary polynomial is 

s2 + 2s + 5 = (s + 1 + 20 (s + 1 - 20 

Its roots are s = -1 - 2i and s = -1 + 2i so that each of the functions exp • 
(-x - 2ix) and exp (-x + 2ix) is a solution of (B44). Equivalently, the real part 
exp (-*) cos 2x and the imaginary part -exp (-x) sin 2x of exp (-x - 2ix) are 
solutions of (B44). Hence, the general solution of (B44) can be expressed as 

u = e~x(A cos 2x + B sin 2x) 

As a third example, we consider 

w" '-coow = 0 (B45) 

whose associated auxiliary polynomial is 

s4 - col 

Its roots are s = ±>/co7 and s = ±iy/co^. Hence, each of the functions 

es/ZTa x e-\fZilx e i sf^l x e~i s/ZT0 x 

or 

e\f^ox
 e-\Tu«x cos \fcjo~ x $in>fco~lx 

is a solution of (B45). Therefore, the general solution of (B45) can be expressed 
as 

file:///fcjo~
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u = A cos VcJo~* + fisin yfZT0x + Ce^>x +De~^x 

As a final example, we consider 

uiu + 2u" + 6u" + 2M' + 5u - 0 (B46) 

whose associated auxiliary polynomial is 

sA + 2s3 + 6s2 + Is + 5 = (s2 + 1) ( 5 2 + 2s + 5) 

Its roots are s = ± i , -1 - 2i, and -1 + 2i. Hence, each of the functions 

gix e~ix e~x-2ix e~x*2ix 

or 

cos x sin x e~x cos 2x e~x sin 2x 

is a solution of (B46). Therefore, the general solution of (B46) can be expressed 
as 

M - A cos x + B sin x + e~x(C cos 2x + D sin 2x) 

THE CASE OF EQUAL ROOTS 
We consider 

u"-2au' + a2u = 0 (B47) 

or 

(D2 - 2aD + < x > = (D - oc)2u = 0 (B48) 

The associated auxiliary polynomial is 

(s-a)2 

which has the repeated root a. Consequently, there is only one solution, namely 
exp (ax ) , of the exponential form. Since (B47) is a second-order equation, we 
need to determine a second solution that is linearly independent from exp (ax ) . 
To this end, we put 

M = eaxv(x) (B49) 

Since 

D(eaxv) = vDeax + eaxDv = aveax + eaxDv = eax(Dv + ay) 

= eax(D + a)v 

D2(eaxv) = D[D(eQxv)] =D[eax(D + a)v) =eax(D + a)2v 

it follows that 

P(D) (eaxv) = eaxP(D + <x)v (B50) 
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are linearly independent solutions of (B52). 
As a third example, we consider 

{D - a ) m u = 0 (B54) 

which, upon using (B49) and (BSO), becomes 

whose solution is 

v = ct + c 2 x + c 3 x 2 + • • • + cmxm'i 

Hence, 

Hence, substituting (B49) into (B48) yields 

e*xD2v = 0 or £>2u = 0 

whose solution is v s ct + c2x. Therefore, the general solution of (B47) is 

« = (<:, + c3x)<?t t J C (B51) 

In other words, exp (ax) and x exp (ax) are two linearly independent solutions 
of(B47). 

As a second example, we consider 

(Z>-a) 3 a = 0 (B52) 

whose associated auxiliary polynomial is 

( 5 - a ) 3 

which has the root s = a with a multiplicity of three. Consequently, there is only 
one linearly independent solution of (B52) in the form of an exponential, 
namely, exp (ax). To determine two other linearly independent solutions, we 
substitute (B49) into (B52), use (B50), and obtain 

(D - afu - (D - ct)3eaxv(x) = e«xD*v « 0 

Hence, 

Z)3u = 0 

which has the general solution 

0- C\ + c 2 x + c 3 x 2 

Consequently, the general solution of (B52) is 

u = (ci + c2x + c3x2)e*x (B53) 

It follows from (B53) that 
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u = eax(ct + c2x + c 3 x 2 + • • • + cmxm ~l) 

As a fourth example, we consider the following general equation with two 
repeated roots: 

(p-al)m(D-a2y'u = Q (B55) 

Equation (B55) can be rewritten as 

(D-ax)m [(D-a2)nu) = 0 

Hence, (B55) is satisfied by any solution of the simpler problem 

(D - a2)nu = 0 (B56) 

Since the operators (D - ax)m and (D - ot2)n are commutative, (B55) can be 
rewritten as 

(D-a2)n [(D-ax)mu] = 0 

Hence, (B55) is satisfied by any solution of the simpler problem 

(D-ax)mu = 0 " (B57) 

The general solution of (B55) is the sum of the general solutions of (B56) and 
(B57) containing (m + n) arbitrary constants, that is, 

it = ea*x(cl + c2x + • • + cmxm ~l) + e^x{bx + b2x + • • • + bnx"'1) 

(B58) 

As an application of (B58), we consider 

(D 4 - SD2 + 16)u = 0 or (D2 - 4)2u = 0 (B59) 

Its associated auxiliary polynomial (s 2 - 4 ) 2 has the roots 

s = 2 (twice) s = -2 (twice) 

Thus, according to (B48), the general solution of (B59) is 

u = (cx + c2x)e2x + (bx + b2x)e'2x 

As a second application of (B58), we consider the following equation with 
complex roots: 

(D2 + ct2)2 (D2 + alfu = 0 (B60) 

The associated auxiliary polynomial 

(s2 + cc])2 ( s 2 + a| ) 3 

has the roots 

s-/aj(twice) -/a^twice) ia2(three times) -ia2(three times) 
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Hence, the general solution of (B60) can be written as 

u = (a, + a2x)eia*x + (6, + M ) * ~ ' o t , * 

+ (c 1 t f^+^V"'^^! + d2x,+ d3xi)e~ia*x 

or in real form as 

u — {A\ + A2x) cos a ,x + ( 5 , + B2x) sin a j * 

+ (Ci + + C 3 X 2 ) cos OL2X + (Dj + D2x + Z ) 3 x 2 ) sin a 2 x 

B.4. Particular Solutions of Inhomogeneous Equations with Constant 
Coefficients 

We determine particular solutions of equations of the form 

P(D)u = / (* ) (B61) 

where fix) consists of exponentials, circular functions, positive powers of x, and 
their products. Particular integrals corresponding to general functions f(x) can 
be determined by using methods other than the symbolic method used here, 
such as the method of variation of parameters, examples of which are discussed 
in Chapters 4 through 11. We use the notation 

« - J j ^ A * ) (B62) 

to denote a particular solution of (B61). 

THE CASE f(x) = exp ( ax ) 
Since 

PiP)eax = eaxP(a) 

then provided that P(a) 0, the particular integral (B62) can be rewritten as 

1 eax 

u = —— eax = - — (B63) 

One can easily verify that (B63) is a particular integral of (B61) because 

e**] eaxPia) 

If P(pt) - 0, then D - a must be a factor of P(D). We assume that a is a root of 
P(a) with multiplicity m so that (D - a)m is a factor of P(D). Hence, P(D)-
(D - a)mQ(D) where Qipi)=tQ. Then, using the notation (B62), we write a 
particular integral of (B61) as 
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Since Q(a)*Q, 

Orjc 

2 ( 0 ) <2(«) 

Hence, 

1 e a * _ l l 

U = (D- a)m Q(a)XQ&)'(D-a)m ( B 6 4 ) 

Using (B50) in (B64) with v = 1, we have 

where l/D stands for the inverse of D, that is the operator that integrates once 
with respect to x, whereas l/Dm integrates m times with respect to x. Thus, 

1 1 xm 

^ • ( 1 ) = ^ T W = ^ 

Hence, a particular integral of (B61) when Pip) = (D - a)m (2(D), where Q(a) * 
0,is 

e a x xm 

" ~ f i ( a )m7 

because 

\eaxxm'\ 

= * D ) { & D m 1 3 1 

-Q(D){S)Veax 

THE CASE/(x) = cos ax 
Since 

Z>2(cos a x ) = - a 2 cos ax D*(cos ax)« ( - a 2 ) 2 cos ax 

then, 

u » e a x = I —̂ — e
a x 

(D-a)mQ(D) (D-a)m [<?(/>) J 
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G£D2) cos ax - c2(-a2) cos ax 

This suggests that we may determine a particular integral by replacing D2 with 
- a 2 whenever it occurs. Thus, a particular integral of 

Q(D2)u = cos a x (B66) 

is given by 

cos ax = -zj—TT (B67) 
Q(D2) Q(-a2) 

provided that Q(-a2) & 0. This is so because 

Q(-a2) cos ax 
- zr,—5:— = cos ax 

An important special case of (B66) and (B67) is 

ii + COQM = cos cor (B68) 

cos cof , 

u = —5 r co co0 (B69) 
COo - co 

When Q( -a 2 ) = 0, the preceding procedure needs to be modified. To this end, 
we note that 

cos ax « Real (eiax) 

so that (B66) can be rewritten as 

Q(D2) (Real u) = Real (etax) 

Hence, a particular solution of (B66) can be determined by detennining a partic
ular solution of 

Q(D2)u = eiax (B70) 

and then taking its real part. A particular solution of (B70) can be expressed as 

u - ^ e - (B71) 

Since G(-a 2 ) = 0, 

Q(D) « (D + i a ) m (D - i a ) m F(D2) 

where ^ ( - a 2 ) ^ 0. Thus, (B71) can be rewritten as 



INHOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS 497 

(D + ia)m (D - ia)m F(D2) 

!_{ L_, 
ia)m \(D + ia)m F(D2) (D-

(B72) 

where we separated the part of the operator that makes the denominator vanish. 
Performing the operation within the brackets in (B72), we have 

,iax 1 i i 
1 1 {eiax} 

1 
u = 

(D - ia)' (2ia)m F(-a2) 

1 

( 2 f a ) m F ( - a 2 ) (D-ia)' 

which, upon using (B50) with v = 1, yields 

eiax , 
u = {!} = 

xmei(ax- \mn) 
(B73) 

(2ia)m F(-a2) Dm 1 J (2a)m F(-a2)m\ 

Taking the real part of (B73) yields the following particular solution of (B66): 

xm 

u = s m ^ , — T - — - cos (ax - i m n ) 
* (2a)m F(~a2)m\ v 2 J 

An important special case of (B66) and (B74) is 

U + COj)M = (D2 + tol)u = COS co0t 

t . , . 1 
2 w o c o s ( c o 0 . - l , ) = 2 w o t sin u)Qt 

(B74) 

(B75) 

(B76) 

The case of f(x) = sin ax can be treated in a similar fashion. Thus, a particular 
solution of 

Q(D2)u = sin ax 

is given by 

sm ax 
t 9 ( - a 2 ) * 0 

(B77) 

(B78) 
Q(-a2) 

When Q(-a2) = 0, we can determine a particular solution as in the case f(x) = 
cos ax, except that we take the imaginary rather than the real part of (B73). 
Thus, a particular solution of 

(D2 + a2)m F(D2)u = sin ax (B79) 

is given be 
tn 

" =,—ZZTTZ——rshi (ax - Imit) (B80) 
( 2 a ) m F(-a2)m\ K 2 

An important special case of (B79) and (B80) is 

1 In. 
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A particular solution of (B83) can be written as 

1 
- _ —cos a x (B84) 

D2 + 2D + 3 v 

We now replace D2 with - a 2 in (B84) and obtain 

u = —— r- cos ax (B85) 
2 Z ) + 3 - a 2 

Next, we multiply both the numerator and denominator of the operator in 
(B85) with an operator that makes the denominator the difference between 
two squares; one of them involves D2. Thus, we multiply the numerator and 
denominator in (B85) with the operator 2D - (3 - a 2 ) , that is, 

2 £ > - ( 3 - a 2 ) 2 0 - 3 + a 2 

u = — — — r - — — r - cos a x = — r — — cos a x 
(2D + 3 - a 2 ) ( 2 D - 3 + a2) 4D2 - (3 - a 2 ) 2 

s 

- cos a x 
• (2D - 3 + a 2 ) = 

K } - 4 a 2 - (3 - a 2 ) 2 

_ 2a sin ax + (3 - a 2 ) cos ax 
a 4 - 2 a 2 + 9 

THE CASE/(x) - x m , WHERE m IS POSITIVE 
We consider 

P(D)u=xm (B86) 

a particular solution of which can be expressed as 

< B 8 7 > 

Next, we expand l/P(D) in a Laurent series in D as 

u + co2," = (D2 + o>l)u - sin co0t (B81) 

u - —̂ — sin (co0r - 4w)" ' cos w 0 f (B82) 
2 w 0 2co0 

When is a polynomial in D and £>2, the preceding procedures need to be 
modified. Instead of the general case, we consider the special case 

(D2 + 2D + 3)u = cos ax (B83) 



INHOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS 499 

(m + fc)(m + * - 1) - • • (m + 1) 

m + * - 1 

(ro + * - l ) ( m + * - 2 ) - - ( m + l ) 

+ • • - + m!a m + / t 

As an example, we consider 

D(Z) 2 + 31> + 2)u=*jc2 

Thus, 

u = 
£ ( D 2 + 3 D + 2 ) " 2D(1 + | £ > + ± D 2 ) " 

- ( | j D + i Z ) 2 ) 3 + - - ] x 2 

- 1 v 3 _ 3 v 2 . 7 „ _ 15 

We note that all the terms in the series beyond Z>2 produce zero when they 
operate on J C 2 . Hence, they were not included in the expansion. Moreover, the 
constant term -15/8 is not needed because it can be absorbed into the homo
geneous solution. 

GENERAL CASE 
We^onsider 

(D2 + 4 a 2 ) « - JC2 cos 2OJC 

Since P(-a2) = 0, we determine one of its particular solutions as the real part 
of a particular solution of 
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p2+4a2)u=x*e2,ax 

Thus, 

Hence, 

u s * x7g7iax s 1 x2gHetx 

D2+4a2 (£>-2/a)(£> + 2/a) 

£>(D + 4/a) 

e2iax / 1 1 D i D2
 | \ 2 

4/a \£> " 4/a " 16a2 + 64/a3 + / * 

4/a \ 3 * ~ 4/a ~ 8a 2 + 32/a3 / 

= ~ r r f x 2 - — ) cos 2ax + - ~ - f x 3 - sin 2ax 
16a2 V 8a 2 / 12a \ 8 a 2 / 
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Index 

Abramowitz, M., 54,102,501 
Accuracy of asymptotic series, 21-22 
Accuracy of perturbation solution, 368, 

369,381,383 
Acoustic waves: 

in ducts carrying compressible flow, 445 
in ducts with sinusoidal walls, 388,416-

426 
in lined ducts with varying cross sections, 

458-460 
Adjoint: 

boundary conditions, 440-441,449 
column vector, 448 
for acoustic equations, 446-447 
of an algebraic system of equations, 392 
of Fredholm's integral equation, 455 
of fourth-order equation, 433,442-443 
matrix, 392 
operator, 406-412,439 
of partial-differential equation, 459,461 
of second-order differential equation, 

403 
of second-order differential system, 

402-404 
self, operator, 407 
of system of first-order equations, 448 

Adjustment of frequency, 118, 197, 202, 
207 

Airplane, 198 
Airy equation, 372, 376, 378, 384 
Airy functions, 372, 375,381 

first kind, 96-99,105 
integral representation of, 96,373 
relation to Bessel functions, 381, 

384 
second kind, 106 

Algebra, 238 
Algebraic equations, 28-50 

cubic, 39-43 

higher-order, 43-45 
quadratic, 28-39 
solvability conditions for, 389-394 
transcendental, 45-50 

Alternative theorem, see Fredholm's 
alternative theorem 

Analytic function, 62,63, 81,90,99, 107, 
326, 329, 343 

definition of, 88 
not, 177 

Annular: 
duct, 445 
plate, 388,436 

Aperiodic solutions, 242 
Artificial parameter, 161 
Ascent contour, 90,92 
Associated, homogeneous equation, 486, 

487 
see also Auxiliary polynomial 

Astronomers, 129 
Astronomy, 113 
Asymmetries, 415,428 
Asymptotic expansion, 22-23 

of Airy function, 96-99 
of Bessel functions, 23,94-96,105,350-

355,358 
definition of, 22 
divergent, 21,23 
elementary operations on, 24, 34 
for equations with large parameter, 362 
of integrals, 51-106 
in terms of a parameter, 28 
uniform, 24 
uniqueness of, 22 
see also Asymptotic series 

Asymptotic matching principle, 
see Matching 

Asymptotic method, 173 
Asymptotic sequence, 22 

507_ 
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in fractional powers, 31, 35,41 
in inverse powers, 37, 38,44 
logarithms in, 22 

Asymptotic series, 18-22 
accuracy of, 23-24 
vs. convergent series, 23, 24, 355 
definition of, 20,21 
error in, 21 
failure of, 362 

see also Asymptotic expansion 
Asymptotic sign, 21,67,346, 350 
Apparent singularity, 357 
Attenuation, 445 
Augmented matrix, 391 
Autonomous system, 196,197, 201, 206 
Auxiliary polynomial, 488-494 
Averaging, method of, 108,131,132, 134, 

148,157, 158, 160, 191,213-215 
for Duffing equation, 129-131,209-213 
exercises involving, 254-256 
generalized, 146,169-173,175, 176 
for general nonlinear equation, 182-184, 

187 
Krylov-Bogoliubov-Mitropolsky, 

173-175 
for linear oscillator, 144-146 
for Mathieu equation, 253-254 
for multifrequency excitations, 226-230 
for Rayleigh equation, 155-157 
shortcomings of, 168-169 
vs. strained parameters, 243 
for systems with quadratic nonlinearities, 

168-169 

Bending of response curve, 202, 208 
Bessel equation: 

modified, 358 
of order « , 427, 359 
of order one, 337, 358 
of order zero, 340 
in standard form 361 

Bessel functions: 
asymptotic expansions of, 105, 355, 

359,382 
integral representation of, 94, 353, 358, 

359 
modified, 358 
of order n, 428 
of order 1/2, 383 
of order 1/3,381 

of order unity, 337-340, 358 
of order zero, 23,94-96, 340-344, 

350-355 
zeros of, 45-50 

Bilinear, 408,409,440 
Binomial theorem, 10, 11,18,29,31,34, 

35, 36,46,53,65,109,137, 148, 
161,164,167,475 

Blended, see Matching 
Bogoliubov, 501 

see also Krylov-Bogoliubov method; Krylov-
Bogoliubov-Mitropolsky method technique 

Bookkeeping device, 161 
Boundary conditions: 

adjoint, 409-410 
disjoint, 448 
general, 401,40£412,450-451 
interfacial, 388,452-454 
loss of, 259,271 
mixed or nonseparable, 401 
transfer of, 418,426 

Boundary layer, 261 
equations, 9 
higher approximations of, 279-284 
interior, 292-296, 314, 318-320 
location, 271-277,313-320 
nested, 304-307 
nonlinear, 307-320 
problem, 257-324 
problem, with two, s, 296-303 
by WKB method, 387 

Boundary operator, 408-411 
Boundary-value problem, see Boundary 

layer; Eigenvalue problem; 
Solvability conditions 

Bounded solutions of Mathieu equation, 
242 

Branch: 
for outer expansion, 313 
singularity, 95 

Brillouin, 364 

Calculus, operational, 136 
Canonical: 

boundary conditions, 315 
form. 238 
representation, 409,440 

Cauchy-Riemann equations, 89-91 
Cauchy's theorem, 81,90, 94 
Celestial mechanicians, 129 
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Center, 114 
mass, 4, 5 

Century, 113 
Characteristic exponent, 240, 242,243, 

249 
Circular: 

flow past, body, 468 
membrane, 426,460 

Clad rod, 452 
Clockwise, 114 
Closed trajectory, 114-117 
Coefficients: 

method of undetermined, 136, 224 
slowly varying, 369-370 

Col, 91 
Cole, 313, 315 
Combination, linear, 482 
Combination resonance, 231, 232 

for acoustic waves in ducts, 422 
for multifrequency excitations, 219 
for parametrically excited gyroscopic 

systems, 399 
treated by averaging, 226-230 
treated by multiple scales, 219-226 

Commutative operator, 493 
Compatibility, condition, 388 

see Solvability conditions 
Complementary function, 486 
Complex notation, 126,143 
Composite expansion, 227-279 

for equation with constant coefficients, 
284 

for equation with variable coefficients, 
286,289 

for multiple-deck problem, 307 
for nonlinear problem, 313 
for problem with two boundary layers, 

303 
for turning-point problem, 292, 295, 

296 
Composite material, 452 
Computer, 22, 29 

finite word length, 24, 355 
Concomitant, 408,440 
Conditions, see Boundary conditions; 

Secular term; Solvability conditions 
Connect, see Matching 
Connection formula, 373-375 
Conservative systems, 107, 134 
Consistency, condition, 388 

see also Solvability conditions 
Consistent equations, 389, 390 
Constant-coefficient equations: 

homogeneous, 487-494 
inhomogeneous, 494-500 

Constant-level, 92 
Constant-phase: 

contour, 94,97 
path, 92 

Continuous, piecewise, 177 
Contour, 83-101, 354 

steepest descent, 92, 93,99 
tracing of, 98 

Contraction transformation, 307, 
309 

Convergence, 20 
vs. asymptotic, 22 
of asymptotic series, 18-22 
nonuniform, 262 
radius of, 327, 329 
see also Ratio test 

Coordinates, natural, 22 
Correction, 113 
Coupling, nonlinear, 233, 394 

of torsional modes, 452 
Cramer's rule, 224, 391 
Crutching device, 161 
Cumulative, 257 
Curve: 

closed, 81 
integral, 114-116 
level, 91-93 
steepest, 92, 93 
see also Frequency-response 

Cycle, see Limit 

Damper, 2,135 
Damping, 134-191 

negative, 147 
ordering of, 205 

Dashpot, 134 
Debye, 93 
Deck, multiple, 304-307 

triple, 304, 323 
Deform, of contour of integration, 82, 

93,94,97,100 
Degeneracy, 415, 428,444 

removal of, 417,432,445 
Degenerate-

definition of, 415 
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fourth-order eigenvalue problem, 388, 
442,444-445 

kernel, 456 
Icait, 277, 372 

»*cond-ord«r «lgenvalue problem, 414-
418 

in vibration of near circular membrane, 
428-431,460-462 

Denominator, 193 
Dependent, linearly, 482-484 
Derivative: 

directional, 90 
expansion method, see Multiple scales 
first, missing, 360-361, 365 

Descent, see Steepest descent 
Determinant, Wronskian, 483-486 
Detuning parameter, 35,200, 206,220, 

222,250, 399,422 
for acoustic waves in duct, 422 
for combination resonance, 220, 222 
for Mathieu equation, 250 
for parametric excitation of gyroscopic 

systems, 399 
for primary resonance, 206 
for subharmonic resonance, 195 
for superharmoic resonance, 200 

Differentiable, 89 
Differential equation: 

definition of, 480 
general solution of linear, 484 ** 

Dimensional analysis, 1-10 
for Duffing equation, 108 
for forced Duffing equation, 190 
for linear oscillator, 134 
for Mathieu equation, 234 
for self-excited oscillator, 147 
for system with quadratic nonlinearities, 

160 
Dirac delta function, 158 
Discontinuous, 36, 261 
Distinguished limit, 277,285, 288,290, 

294, 297,300,310,314,315, 
320,323,372 

more than one, 304-307 
Divisor, see Small 
Divergence, 346, 352 

illustration of, 21, 22 
improvement of, 22 
see also Ratio test 

Domain, of validity, 265,277 

finite, 268 
infinite, 307 
inner, 277-279 
outer, 277-279 
tee alio Overlapping domains 

Duct, heat transfer in, 381, 386,388, 
406,458 

Duffing equation, 160,180,184 
exact solution, 113-118 
forced oscillation of, 190-215 
jump phenomenon for, 202-203, 

208-209 
phase plane for, 115 
straightforward expansion for, 109-113 
treated by averaging, 129-131 
treated by Lindstedt-Poincare method, 

118-121 
treated by multiple scales, 122-129 
treated by renormalization, 121-122 
variation of parameters for, 127-129 

Dummy: 
summation index, 330 
variable of integration, 367 

Earth, 1,6 
Edge layer, 257 

see also Boundary layer 
Eigenvalue: 

of matrbe, 238,239 
problems using WKB approximation, 

366-369 
problems with turning points, 379-

386 
Eigenvalue problem: 

for boundary-layer stability, 435 
degenerate second-order, 414-418 
for problem with a regular singular 

point, 426-431 
fourth-order, 441447 
simple second-order, 412414 

Eigenvector, of matrix, 238 
Elastic waves, 418 
Electrical applications, 257 
Electromagnetic waves, 418 
Electron, 1 
Elementary function, 376 
Ellipses, 5,28 
Elliptic integral: 

first kind, 53,117 
second kind, 101 
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Energy, 114 
Equations with large parameter, 360-387 

eigenvalue problems, 366-369 
eigenvalue problems with turning 

points, 379-383 
Langer transformation, 375-379 
Liouville-Green transformation, 364-366 
slowly varying coefficients, 369-370 
turning-point problems, 370-375 
WKB approximation, 361-364 
see also Derivative, first; Standard form 

Equilibrium position, 107, 159, 175, 176 
Error integral, 55 
EST, 260 
Euler: 

equation, 331-333,335,339, 340 
transformation, 22,133 

Exact solution: 
for algebraic equations, 31, 34 
for Duffing equation, 113-118 
for linear oscillator, 136,137 
for simple boundary-value problem, 

259-260 
Excitation: 

external, 190, 191,197, 202 
ordering of, 205 
parametric, 234 
see also Multifrequency excitations 

Expansions, 10-12 
breakdown, 113 
error in form, 41 
nonuniform, 24,113 
of integrands, 52-56 
overlap, 265 
pedestrian, 113 
steps in determining, 28-31 
see also Asymptotic expansion; 

Inner expansion; 
Inner inner expansion; Intermediate 
expansion, Outer expansion 

Existence theorem, 481,484 
Exponential, form of expansion, 362 

Factor, integrating, 51,310 
Factorial function, 56 
Floquet: 

form, see Normal 
theory, 234, 236-243, 247-249 

Flow: 
Compressible, 445 

laminar, 381 
past plate, 8 
past wavy wall, 468 
turbulent, 386 
see also Acoustic waves 

How, viscous, past a plate, 8-10, 283 
Fluid mechanics, 257 
Forced oscillations: 

multifrequency, 216-233 
single frequency, 190-215 

Fourier, series, 110, 178, 181, 183, 
428,429,460 

transform, 51, 63 
of trigonometric functions, 475-478 

Fourier integral, 88,90 
generalized, 79 
by integration by parts, 63 
leading contribution to, 79-80 
transformation to Laplace integral, 

81,83 
Fractional powers, 31 
Fractions, partial, 153 
Fredholm's alternative theorem: 

for integral equation, 456 
for Sturm-Liouville problem, 406 

Fredholm's integral equation, 454 
French, 113 
Frequency: 

natural, 2, 160 
nonlinear, 108,118, 162,180 
of two mass centers, 5 

Frequency-response equation, 198 
for primary resonance, 208-209 
for subharmonic resonance, 198-

200 
for superharmonic resonance, 202-

203 
Frobenius form, 333-334, 341,347 
Frobenius solution, 333-344 
Fundamental: 

existence theorem, 481,483 
set of solutions, 484 

Gamma function, 74, 75, 86,87 
asymptotic expansion of, 105 
definition of, 70-72 

Gauge functions, 12-18, 29 
Geometric series, 19 
Gradient, 90 
Green: 
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Liouville-, transformation, 361,364-366, 
376-377 

see also Identity 
Gyroscopic systems, 394-400 

nonlinear, 394-397 
parametrically excited, 397-400 

Heat transfer, 381, 386 
Hermitian matrix, 392 
Hills, 92 
Homogeneous equation: 

definition of, 480 
properties of, 482-486 
solutions of, with constant coefficients, 

487-494 
Hour arm, 122 
Hyperbola, 97 

Identity: 
Green's, 408,412,416,439,441,459, 

460 
Lagrange's, 408 
trigonometric, 472-479 

Illegitimate, 261 
Incompatible, 424 

equations, 396 
Inconsistencies, 388,402,424 
Independence, linear, 482-484 
Index, 331 
Indices: 

differing by integer, 336-340 
differing by noninteger, 333-335 
equal, 333, 340-342 

Indicial equation, 332, 334 
Inertia force, 3 
Inflection point, 74 
Inhomogeneous equations, 388-471 

associated homogeneous equation, 486, 
487 

definition of, 480 
properties of, 486-487 
solutions of, with constant coefficients, 

494-500 
Initial conditions, satisfaction of, 

353 
treatment of, 111-113 

Inner expansion, 266, 268, 277 
for equation with variable coefficients, 

285-286,290-291,294 
for nonlinear problem, 310-311,314-316 

for problem with two boundary 
layers, 297-302 

for simple boundary-value problem, 
263,280, 281 

for turning-point problem, 371-372 
two, s, 304-307 

Inner inner expansion, 264,266,267 
Inner product, 393 
Inner variable, 268 

nonlinear, 277 
selection of, 271-276, 285,288,290 

Instability, see Transition curves 
Integrability: 

condition, 388 
see also Solvability conditions 

Integral: 
asymptotic expansion of, 51-106, 

354,359 
curve, 114 
equation, 454-457 
of motion, 114 
powers, 31 
representation of Airy functions, 373 
representation of solutions of 

differential equations, 51-52,353, 
358 

see also Fourier integral; 
Laplace integral 

Integrands, 118 
expansion of, 52-56 

Integration, numerical, 315,368,381, 
383 

Integration by parts, 56-65,80,312 
applied to Airy function, 106,373 
failure of, 64,65,68,79,94,96 

Interacting modes, 423,426 
Interaction, 169 

viscous-inviscid, 305 
Intermediate expansion, 264,267,268 

for simple boundary-value problem, 
282 

variable, 268 
Intermolecular distance, 1 
Irregular singular point, 328, 329 

at Infinity, 344,355 
solutions near, 344,355 

Iteration, 368, 369,381,383 

Jordan form, 238 
Jump phenomenon, 202,203,208,209 
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Kernel, 456 
Kramers, 364 
Krylov-Bogoliubov method, 130 
Krylov-Bogoliubov-Mitropolsky 

technique, 160,169, 173-175 

Lagrange, see Identity 
Langer, 257, 284 
Langer transformation, 257, 361, 371, 

375-379 
Laplace integral, 81, 83, 84, 86-88,90, 

95,354 
generalized, 64,79,98 
by integration by parts, 61-63 

Laplace's method, 18,65-78 
applied to Airy function, 106, 373 
comparison of, with stationary phase, 90 

Laplace transform, 51, 62, 373 
Laurent series, 327,498 
Legendre polynomial, 106 
Level curve, 91-93 
l'Hospital's rule, 14-16, 58" 
Limit: 

cycle, 149-151 
definite, 277 
distinguished, 277 
not interchangeable, 262 

Lindstedt-Poincare* technique, 108,122, 
125,131, 132,134, 148, 160, 
162,167,172,176 

applied to Duffing equation, 118-121 
applied to linear oscillator, 139-142 
applied to system with quadratic 

nonlinearities, 164-165 
failure of, 141,142,152,155 

Linear, algebra, 238 
combination, 482. 
equations, 480-500 
equations with large parameter, 360-

387 
equations with variable coefficients, 

325-359 
independence, 482-484 
operator, 481 

Linear oscillator, 134-146, 184 
exact solution, 136-139 
straightforward expansion, 135-136 
treaded by averaging, 144-146 
treated by Lindstedt-Poincare* technique, 

139-142 

treated by multiple scales, 142-144 
Lined ducts, 458 
Liouville: 

-Green transformation, 361, 364-366, 
376-377 

problem, 361 
Sutrm-, 406 

Load, radial, 6, 7 

Magnified scale, 257,262 
moderately, 263 
more, 263 

Main, resonance, see Primary 
Matched asymptotic expansions, 

method of, 257,279 
applied to equations with variable 

coefficients, 284-296 
applied to simple boundary-value 

problem, 270-279 
basic idea underlying, 265,270 
comparison with multiple scales, 278, 

279 
objective of, 267 

Matching: 
basic idea, 265-268 
comparison of intermediate and 

straightforward, 282 
intermediate, 268, 282 
multiple decks, 306, 307 
principle, 266, 267 
see also Van Dyke's matching principle 

Matching of inner and outer expansions, 
equations with variable coefficients, 

286,288-289,291-292, 294-295 
multiple deck problem, 306-307 
nonlinear problem, 311-312, 316-319 
problem with two boundary layers, 

298-302 
simple boundary-value problem, 281-283 
turning-point problems, 372-375 

Mathieu equation, 234-256 
straightforward expansion for, 235-236 
treated by averaging, 253-254 
treated by multiple scales, 249-253 
treated by strained parameters, 243-247 
treated by Whittaker's method, 247-249 

Matrix: 
determinant of coefficient, 415, 417 
nonsingular, 408, 440 
sub, 410, 440 
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Membrane, 388,406,460 
vibration of, 426-431 

Meromorphic function, 89 
Minute arm, 122 
Mltropoliky; i«« Krylov-BogoUubov-mathod; 

Krylov-BogoUubov-MHropoWky 
technique 

Mixed boundary conditions, 401 
Mixed-secular term; see Secular term 
Mode: 

acoustic, 420,422 
interacting s, 423,426 
torsional, 452 
in vibration of membrane, 428 

Modeling, mathematical, 1 
Modulation, of amplitude and phase, 

196,397,400 
Mook, 397,400 
Moon, 6 
Mountain, 91 
Multifrequency excitations, 216-233 

straightforward expansion for, 216-219 
treated by averaging, 226-230 
treated by multiple scales, 219-226 

Multiple deck, 304-307 
Multiple scales, mothod of, 108,131, 

132,134,146, 148,156-158, 160, 
169, 172,173,175, 176,184,191, 
211,212,213-215,388,434 

application to nonlinear partial-differential 
equations, 279 

applied to acoustic waves, 422-426 
applied to boundary-layer problems, 

257, 268-270 
applied to Duffing equation, 122-127 
applied to general nonlinear systems, 

181-182,187 
applied to linear oscillator, 142-144 
applied to Mathieu equation, 249-253 
applied to nonlinear gyroscopic 

system, 394-397 
applied to parametrically excited system, 

397-400 
applied to primary resonances, 205-208 
applied to Rayleigh equation, 152-155 
applied to secondary resonances, 193-205 
applied to system with quadratic 

nonlinearities, 166-168 
comparion with matched asymptotic 

expansions, 278, 279 

excercises, 254-256 
vs. strained parameters, 243 
suited for boundary-layer problems, 

265 

Natural coordinates, 22 
Navier, 279 
Navier-Stokes equations, 8,9,279 
Nayfeh, 397,400 
Newton-Raphson technique, 368, 369, 

381,383 
Nonanalytic functions, 177, 185-189 
Nonautonomous sytem, 196 
Nondimensionalization, 1-10 
Nonelementary functions, 376 
Nonlinear, general weakly, systems, 

straightforward expansion for, 177-179 
treated by averaging, 182-184 
treated by multiple scales, 181,182 
treated by renormalization, 179-180 

Nonlinear oscillations, 269 
Nonseparable boundary conditions, 401 
Nonsingular transformation, 409 
Nonuniform: 

convergence, 262 
expansion, 33, 108,113 

Nonuniformity 34,120, 134 
for Duffing equation, 113,118 
in expansion, 24 
for linear oscillator, 135-139 
manifestation of, 388 
for Rayleigh equation, 149 
region of, 26, 33 
for simple eigenvalue-problem, 258-

262 
Normal: 

form, 240-243, 247 
solution, 344, 348 

Numerical integration, 315,368, 369, 
381,383 

Operation, illegitimate, 261 
not justified, 35 

Operational calculus, 136 
Operator, 481 

adjoint, 439 
commutative, 493 
fourth-order, 438 
polynomial, 487,488 

Orbit, 1,129 
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Order: 
of differential equation, 480 
of magnitude, 1 
symbols, 17-18 
of term, 29, 205 

Ordinary point, 326. 328, 329 
infinity, 342-343 
solutions near, 329-331 

Orr-Sommerfeld equation, 435 
Oscillations, rapid, 79,80 
Outer expansion, 266, 268, 277 

for equations with variable coefficients, 
284-285,287-288,290, 293 

for nonlinear problem, 309, 313 
for problem with two boundary layers, 

297 
for simple boundary-value probem, 

261,279,280 
for triple-deck problem, 304 

Outer variable, 268 
as guide for determining inner expansion, 

310 
Overlapping domains, 265-268, 271, 277 

Parabola, 132 
Parameter, 13,127 

dimensionless, 3 ,4 ,6 ,7 ,9 
in Duffing equation, 108 
multiplies highest derivative, 257-324 
perturbation, 28 
see also Equations with large parameter; 

Strained parameter; Variation of 
parameter 

Parametric excitation, 234 
of gyroscopic system, 397-400 
of two-degree-of-freedom system, 

256 
see also Mathieu equation 

Pass, mountain, 91 
Path, steepest, 97 
Pedestrian expansion, 113, 136 
Period: 

of Duffing equation, 117,118, 120, 
121 

nonlinear, 118 
of two mass centers, 5 

Periodic coefficients, see Mathieu equation; 
Parametric excitation 

Periodic motion, 114-116,141, 149 
for general nonlinear systems, 180 

for Mathieu equation, 240 
for primary resonance, 207 
for subharmonic resonance, 197 
for superharmonic resonance, 

202 
tee also Limit, cyle 

Perturbation: 
parameter, 3,4,6, 7,9, 10, 28 
singular, 36 
special method of, 108,129 

Perturbed equation, 28 
Phase, plane: 

constant-, 90-92,93,97 
for Duffing equation, 114-116 
for Rayleigh equation, 149,150 
stationary, 79, 80 

method of, 79-88 
Plate: 

flow past, 8-10 
vibrations of, 6,7, 388,436-438 

Poincare*, 20 
see also Lindstedt-Poincare' technique 

Pole, 327-329 
Polynomial: 

auxiliary, 488-494 
operator, 488489 

Primary resonance, 218 
definition of, 193 
treated by averaging, 212-213 
treated by multiple scales, 205-209 

Product, inner, 393 
Programmer, skill of, 24, 355 
Propellers, 200 

Quantum mechanics, 257, 379 

Raphson, 368,369, 381,383 
Rational fractions, 22 
Ratio test, 10,19, 20, 53, 55, 60, 61, 

65,66, 138,139,327,331,342, 
346,353 

Rayleigh equation. 147, 150, 180, 
184 

forced, 213-214 
see also Self-excited oscillators 

Recurrence relations, 330, 334, 341 
Reduced equation, 28, 30,33, 109, 

271 
Reduced mass, 6 
Redundant, 389,390 



Regular singular point, 328,329,406, 
430 

infinity is, 343 
solutions near, 331-344 

Renormalization, method of, 108,122, 
125, 131,132, 148,157,158, 160, 
165,167,172 

applied to Duffing equation, 121-122 
applied to general nonlinear systems, 

179-180 
applied to Rayleigh equation, 151-152 
applied to system with quadratic 

nonlinearities, 162-164 
failure of, 141,152,155 

Repeated root, 491-494 
Representative point, motion of, 114,117 
Resonance, phenomena, 123, 215 

simultaneous, 222, 231, 232 
see also Combination resonance; 

Primary resonance; Subharmonic 
resonance; Super harmonic resonance 

Resonant, values, 191,215,216 
frequencies, 193 

Restoring force, 3,107,114, 134,159 
Reynolds number, 9 
Ridges, 91 
Riemann ,89-91,93 
Rigidity, of plate, 6 
Roots: 

complex conjugate, 489491 
equal, 491494 

Rudder, 200 

Saddle, 91 
Saddle point, 91,92,96, 97, 99,100, 

114 
hod, see Steepest descent 

Scales, 122, 123, i73 
combination, 262,268 
effect of, on expansion, 262-265 
fast, 257 
magnified, 257, 262 
stretched, 257,262 
strong dependence on, 264 
see also Stretching transformation 

Scaling of dependent variable, 314 
Second arm, 122 
Secondary, resonance, 193-205,209-212 

definition of, 193 

tee also Combination resonance; 
Subharmonic resonance; 
Superharmonic resonance 

Secular term, 113 
compounded at higher order, 136 
not leading to nonuniformity, 268 
elimination of, 126,140,141,143, 

144,163-165,175, 182, 388 
in forced Duffing equation, 193 
in solution of Duffing equation, 113, 

120-122,124,215 
in solution of general nonlinear 

systems, 179 
in solution of Mathieu equation, 236 
in solution of Rayleigh equation, 

149,153 
in solution of systems with quadratic 

nonlinearities, 162 
Self-adjoint, 414,416,424.462 

algebraic system, 457 
equation with regular singular point, 

429,430 
fourth-order differential equation, 

433434,443 
integral equation, 456 
making a second-order equation, 405 
matrix, 392 
operator, 407,439 
partial-differential problem, 460,461 
problem with interfacial boundary 

conditions, 454 
second-order differential system, 404, 

410 
system of first-order equations, 449 
for vibration of plate, 436438 

Self-excited oscillators. 147-158 
straightforward expansion for, 

148-150 
treated by averaging, 155-157 
treated by multiple scales, 152-155 
treated by renormalization, 151,152 

Separation of variables, 114,116,153, 171, 
186,284, 287,306,315, 360. 365, 
378 

for acoustic waves in duct, 419-421, 
423 

for vibration of membranes, 427 
Separatrlces, 114 
Series, see Asymptotic series; Geometric 

series; Taylor series 



Shock layer, 257,314,319 
Sie'cle, 113 
Similar matrices, 238 
Singular, perturbation problem, 36, 262, 

266 
transformation at turning point, 376 

Singularity, 89,91 
apparent, 351 
branch, 95 
classification of, 328, 329 
essential, 13 
in expansion, 24 
at infinity, 342-344 
isolated, 327 

Singular point, 326 
infinity is, 343 
irregular, 328 
regular, 328 

Sinusoidal: 
interface, 452 
walls, 418426 

Skin layer, 257 
see also Boundary layer 

Small-divisor, 388 
for acoustic waves, 422 
conversion to secular term, 195,424 
for forced oscillations of Duffing 

equation, 193 
leading to combination resonance, 218, 

219,399,422 
leading to primary resonance, 205, 211 
leading to subharmonic resonance, 195 
leading to superharmonic resonance, 

200 
for Mathieu equation, 236 
for multifrequency excitations, 216, 

218,219 
for parametrically excited gyroscopic 

systems, 399 
Solid mechnaics, 257 
Solvability conditions, 269, 388471 

for algebraic equations, 389-394 
for differential system of equations, 

445447 

for differential systems with interfacial 
boundary conditions, 452454 

example motivating, 401402 
for fourth-order differential system, 

432438 
for general boundary conditions, 406412 

tor general differential systems 
of first-order equations, 447452 

for general fourth-order differential 
system, 438441 

for integral equations, 454457 
for partial-differential equations, 458-

462 
for second-order differential systems, 

401412 
sufficient, 456 

Sound waves, 406 
see also Acoutic waves 

Spacecraft, 6 
Spaceship, 4, 5 
Special method of perturbation, 108,129 
Spot, flat, 91 
Spring, 2, 3, 134, 135,159, 160 
Stability: 

of boundary layer, 388,469470 
of nonparallel flows, 434 
see also Transition, curves 

Standard form, equations in, 361 
Stationary phase, method of, 79-88 

applied to Airy integral, 106, 373 
applied to Bessel function, 354 
comparison of, with Laplace's method, 

90 
Stationary point, 64, 78, 79, 80, 83, 84, 

85,87,90,114,354 
contribution to leading term, 87 
value, 197,202,207 

Steady-state solution, 141,197,198, 202, 
221 

Steepest, contour, 92, 98, 99 
descent, method of, 88-101, 373 
path, 92 

Stegun, 54, 102 
Stokes, 80,84,275,279 

see also Stationary phase 
Stokes lines and surfaces, 257 
Stokes-Oseen flow, 10 
Straightforward expansion, 134, 137 

for acoustic waves in duct, 418422 
for circular function, 137-139 
for Duffing equation, 109-113 
for exponential function, 137, 138 
for forced Duffing equation. 191-193 
for general nonlinear systems, 177-

179 
for linear oscillator, 135-136,138 
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14-1,368 
14-2, 369 
14-3,381 
144,383 

Taylor wrles, 11, 12,52,54,55,74,75, 
76.78,81,84,85,98,107, 121, 
151,163, 326-327,329, 331, 343 

for cosine function, 137-139 
for exponential function, 137,138 
to transfer boundary conditions, 

418-119,426 
Tensor notation, 457 
Torsional modes, 452 
Trajectories, 114-116 
Transcendental equation, 45-50 
Transfer of boundary conditions, 418-419, 

426 
Transformation: 

of integral equation to algebraic 
equations, 457 

invert, 409 
nonsingular, 377,409,440,450 
regularity of, 379 
see also Liouville; Stretching 

Transforms, 51 
Transient response, 141,144,146, 

148,157 
Transition, curves, 243-254 

periodic shapes, 242,243 
points, 257, 364,370 
values, 240, 251 

Transpose, 392,448,450 
Trigonometric identities, 472-479 
Triple deck, 304,323 
Turning-point problems, 361 

definition of, 364, 370 
eigenvalue problems, 379-386 
of order n, 377 
simple, 378-379 
treated by matched asymptotic 

expansions, 289-296, 371-375 
two, 381 

Systems with quadratic nonlinearities, 
159-176,216, 231 

forced, 213 
straighforward expansion for, 160-

162 
treated by averaging 168-169 
treated by generalized method of 

averaging 169-172 

for Mathieu equation, 235-236, 243 
for multifrequency excitations, 216-219 
for Rayleigh equation, 148-150 
reason for breakdown, 118,138,139, 

149 
tor simple boundary-value problem, 258 
for systems with quadratic nonlinearities, 

160-162 
Strained parameters, method of, 234,242, 

436 
applied to degenerate second-order 

eigenvalue problem, 414-418 
applied to fourth-order eigenvalue 

problem, 442-445 
applied to Mathieu equation, 243-247 
applied to simple second-order 

eigenvalue problem ,412-414 
applied to vibrations of membrane, 426-

431 
Straining, mild, 257 
Streamfunction, 434 
Stretched variable, 257, 262,271 

see also Inner variable 
Stretching, transformation, 257,262, 268, 

274,290,294, 297, 300, 304, 305, 
314,371 

proper, 277 
see also Inner variable 

Sturm-Liouville problem, 406 
Subharmonic resonance, 195-200, 218, 219 

definition of, 198 
Subnormal solution, 344, 348-350 
Superharmonic resonance, 200-203,211, 

218 
definition of, 202 

Superposition, principle of, 110, 111, 166, 
178,402,482,485 

Switching from one expansion to another, 
277 

Symbolic method, 494-500 
Symbols, order, 17-18 
Symmetric: 

kernel, 456 
matrix, 392,457 

Symmetry, 415,428 

Table: 
3-1,54 
4-1,117 
4-2,118 
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treated by Krylov-Bogoliubov-
Mitropolsky technique, 173-175 

treated by Lindstedt-Poincare* technique, 
164-165 

treated by multiple scales, 166-168 
treated by renormalization, 162-164 
see also Multifrequency excitations 

Unbounded motions, 226,249,251 
of Mathieu equation, 240,241 

Uniformazion, 122 
Unique, 480,484 

of Mathieu equation, 240,241 
Unstable motions, 203,208,231,240, 

243 

Valleys, 91-93 
van der Pol equation, 148,157 

see also Self-excited oscillators 
van der Pol method, 130 
van Dyke, 22,282,283 
van Dyke's matching principle, 282-283 

failure of, 283 
Variation of parameters, 108, 136, 325-

326,494 
for Duffing equation, 127-129 
for general nonlinear equation, 182-183 
for hard excitation of Duffing equations, 

209-211 
for inhomogeneous linear equations, 

325-326 
for linear oscillator, 144-145 

for Mathieu equation, 253-254 
for multifrequency excitations, 226-229 
for particular solutions, 136 
for Rayleigh equation, 155-156 
for soft excitation of Duffing 

equation, 212-213 
for systems with quadratic nonlinearities, 

168 
Vector solution, 325 

Watch, 122,123 
Watson's lemma, 77,95,98,101 

statement of, 67,68 
Waveguide, 418 
Wavenumber, 420,422 
Wave propagation, 452 

see also Acoustic waves 
Wentzel, 364 
Whittaker's method, 243,247-249, 

253 
exercises involving, 254, 255 
limitations of, 249 

Wings, 200 
WKB, 257,284, 370, 386, 387 

approximation, 361-364, 
372 

breakdown of approximation, 364, 
376-377 

using, to solve eigenvalue problem, 
366-369 

WKBJ, method, 257 
Wronskian, 236, 239,483-486 
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