می دانیم وقتی یک ماتریس روی یک بردار اثر می کند حاصل بردار جدیدی است.

وقتی ماتریس روی مجموعه ای از بردارها اثر می کند حاصل مجموعه ای از بردارهاست.

مجموعه نقاط یک تصویر را در نظر بگیرید. وقتی یک ماتریس روی این تصویر اثر می کند بردارهای حاصل یک تصویر جدید تشکیل می دهند.

اگر ماتریس همانی باشد اثر ماتریس روی هر شکل (یا روی هر جسم در هر فضایی که باشد) “همان” شکل است و تغییری ایجاد نمی شود. طبیعتا تحت تاثیر ماتریس طول جسم (یک بعدی)، مساحت جسم (دوبعدی)، حجم جسم (سه بعدی) و … تغییری نمی کند و در این حالت دترمینان برابر یک است.

اگر بتوان تصویر حاصل را با یک ماتریس به تصویر اولیه تبدیل کرد می گوییم فرایند انجام شده توسط ماتریس، برگشت پذیر است (اصطلاحا می گوییم ماتریس معکوس پذیر است) و به ماتریسی که تصاویر حاصل از اثر ماتریس A را به شکل اولیه تبدیل می کند ماتریس معکوس ماتریس A می گوییم.

اساسا ماتریس یک تابع است و مفهوم معکوس ماتریس همان مفهوم معکوس در توابع است (معکوس f را با f^{-1}} نشان می دهیم و معکوس ماتریس A (می توانید بگویید تابع A)را نیز به طور مشابه با A^{-1}} نشان می دهیم و می خوانیم  آ اینورس).

دترمینان میزان تغییرات (تغییر طول، مساحت، حجم و …) را در شکل حاصل از اثر ماتریس نشان می دهد (اینکه مساحت شکل اولیه پس از اثر ماتریس چند برابر شده یا حجم یا …)

حدس می زنید دترمینان ماتریس معکوس یعنی A^{-1}} و دترمینان A چه رابطه ای دارند؟

حدس می زنید ضرب دو ماتریس از دیدگاه فوق، چگونه است و آیا با ترکیب دو تابع fog(x)=f(g(x)) مرتبط است؟

حدس می زنید عکس یک خرگوش لاغر اندام را با چه نوع ماتریسی می توان به یک خرگوش تپلی تبدیل کرد؟

یک ماتریس قطری بنویسید و تصویر کلیه نقاط روی یک دایره به شعاع ۲ را تحث اثر این ماتریس در یک نمودار متفاوت مشخص کنید. مساحت جسم قبل و بعد از اثر ماتریس چند است و چه ارتباطی با دترمینان ماتریس دارد.

ماتریسی که در نظر گرفته اید را در یک عدد ضرب کنید و عملیات فوق را تکرار کنید چه نتیجه ای می گیرید و آیا قابل انتظار است؟

این متن نیاز به تکمیل دارد…

در این نوشته کاربردهای متنوعی از معادلات دیفرانسیل در رشته های عمران، مکانیک، زیست شناسی و … ذکر کرده بودیم.

در اینجا قصد داریم به طور مختصر کاربرد معادلات دیفرانسیل را در مهندسی عمران به ویژه در خمش تیرها بیان کنیم.

خمش تیرها و صفحات

یک تیر را به عنوان بخشی از محور x در نظر بگیرید و مبدا مختصات را ابتدای تیر قرار دهید. در صورتی که این تیر تحت بارگذاری باشد در نقاط مختلف تیر بسته به میزان و نوع بارگذاری مقدار خمش (مقدار انحراف از حالت اصلی) متفاوت است. مقدار خمش را به عنوان تابعی از فاصله تا ابتدای تیر می توان در نظر گرفت. اگر مقدار خمش در فاصله x را با y(x) نشان دهیم این تابع در یک معادله دیفرانسیل صدق می کند که با حل آن معادله می توانیم مقدار خمش را در هر نقطه از تیر بدست آوریم. در بارگذاری های ساده و تیرهای همگن (تیرهایی که جنس میله در کلیه نقاط یکسان است و چگالی تیر در نقاط مختلف متفاوت نیست)، معادله دیفرانسیل مربوطه بسیار ساده است و جواب های معادله را صرفا با یک انتگرال گیری ساده می توان بدست آورد.

در حالتی که به جای تیر، یک صفحه یا یک جسم سه بعدی مثل سازه های مختلف داشته باشیم معادله دیفرانسیل مربوطه در حالت کلی یک معادله دیفرانسیل جزئی است لینک زیر را ببینید. به عنوان مقدمه ای برای این موضوع اینک زیر را ببینید.

https://en.wikipedia.org/wiki/Bending_of_plates

کلید واژه های برای جستجوی بیشتر در گوگل:

خمش، صفحه، معادله دیفرانسیل، deflection plate differential equations

این نوشته تکمیل خواهد شد.

استفاده از مطالب این سایت با ذکر منبع “ریاضیات مدرن” بلامانع است.

 

خداوند دنیا را آفرید و بشر برای فهم آن، معادلات دیفرانسیل را.

معادلات دیفرانسیل به چه درد می خورد؟ این سوالی است که در خواندن هر موضوع ریاضی و غیر ریاضی باید پرسید. این موضوع به چه درد می خورد؟ اگر به درد نمی خورد که چرا وقت ارزشمند را صرف یادگیری آن کنیم؟

پاسخ دقیق به سوالات این چنینی عموما نیاز به اطلاعات بین رشته ای دارد و گاهی اوقات نیاز به ارتباط با صنعت و تکنولوژی های روز دنیا و تحقیقاتی که در پژوهشگاه های غول های اقتصادی دنیا انجام می شود. در متن زیر تنها به تعداد انگشت شماری از کاربردهای دیفرانسیل در سطحی قابل فهم می پردازیم.

معادلات دیفرانسیل هر چند در زندگی روزمره در ظاهر هیچ نقشی ندارند ولی در فهم تغییرات پدیده های مختلف به ویژه اتفاقات طبیعی که هر روز دور و برمان رخ می دهد به کمک ما می آیند. اگر کنجکاو نباشید و تغییراتی که هر روز دور و برتان می افتد برایتان مهم نباشد باید بگویم معادلات دیفرانسیل به هیچ دردی نمی خورد.
مدل سازی بسیاری از پدیده ها در فیزیک، مهندسی، زیست شناسی، باستان شناسی و … منجر به معادلاتی می شود که مشتق متغیر وابسته (یعنی سرعت تغییرات متغیر وابسته) در معادله وجود دارد و به این معادلات، معادلات دیفرانسیل گفته می شود. برای آگاهی از جواب و پیش بینی حوادث باید آنها را حل کرد. به طور مثال به کمک جواب های معادلات دیفرانسیل، زمان لازم برای انجام یک واکنش شیمیایی را می توان تخمین زد. مثلا می توان فهمید چقدر غلظت یک محلول بعد از زمانی مشخص چقدر است. می توان قدمت یک اثر تاریخی را از طریق حل یک معادله دیفرانسیل بسیار ساده تشخیص داد. می توان در پزشکی قانونی زمان به قتل رسیدن شخص را با توجه به دمای فعلی جسد و دمای محیط پیرامون تشخیص داد. در واقع آهنگ تغییرات دما متناسب با اختلاف دمای بدن بیمار با دمای محیط است و این یعنی مشتق تابع دمای بدن بیمار در زمان t نسبت به زمان مساوی با ضرب یک عدد ثابت در اختلاف دمای بدن و محیط به بیان ریاضی \frac{d\theta}{dt}=\alpha (\theta-\theta_a)  که یک معادله دیفرانسیل مرتبه اول خطی است.

می توان با حل معادلات انتقال حرارت، از تغییرات دمایی یک جسم در زمان های بعدی تنها با داشتن اطلاعاتی از قبیل ضریب رسانش گرمایی و دمای اولیه و … آگاه شد. می توان با حل معادلات دیفرانسیل مربوط به تغییرات جوی به پیش بینی وضع هوا پرداخت. البته همه اینها در قالب نرم افزارهای آماده ای وجود دارد و با وارد کردن اطلاعات لازم می توان جواب را در کامپیوتر دید. با این حال هنوز نرم افزارهای حل معادلات دیفرانسیل مشکلات زیادی دارند و توانایی حل مسائل محدود و با شرایط محدود کننده ای را دارند که حتی در فرایند مدل سازی هم برای بدست آوردن یک معادله قابل حل از تقریب های زیادی استفاده شده و از برخی خواص فیزیکی سیستم صرف نظر شده است. دانش بشر در حل مسائل واقعی با استفاده از تئوری های موجود معادلات دیفرانسیل هنوز نیاز به توسعه زیادی دارد.
با حل معادلات دیفرانسیل مربوط به تغییرات جمعیتی یک گونه جانوری می توان پیش بینی کرد جمعیت آن گونه به چه صورتی تغییر می کند. معادلات دیفرانسیل شکار و شکارچی در این دسته از معادلات جای دارند.
می توان زمان لازم برای جذب یک دارو را با حل معادلات دیفرانسیل پخش (diffusion) پیش بینی کرد.
می توان رشد سلول های سرطانی را با یک معادله دیفرانسیل مدل سازی کرد و سپس تغییرات سلول ها را با حل آن معادله پیش بینی کرد.
می توان استراتژی های بهینه ای برای سرمایه گذاری در بورس از طریق حل معادلات دیفرانسیل مربوطه یافت.
در طراحی نرم افزارهای مهندسی عمران مربوط به تحلیل سازه ها آگاهی از معادلات دیفرانسیل مربوط به خمش صفحات و تیرها تحت شرایط بارگذاری مختلف اجتناب ناپذیر است.

لازم به ذکر است جزئیات هر یک از موارد فوق نیازمند آگاهی از مباحث بین رشته ای (ریاضیات و اقتصاد، ریاضیات و زیست شناسی، ریاضیات و زمین شناسی، ریاضیات و مهندسی عمران، و … است.

برای اطلاع از کاربردهای معادلات دیفرانسیل در پزشکی این لینک (به زبان انگلیسی) را ببینید. لینک فوق دارای مراجع مختلفی از کاربرد معادلات دیفرانسیل در تکنولوژی، کاربرد معادلات دیفرانسیل در پزشکی، تحقیقات سرطان، طراحی پلیمرها، طراحی دارو و … است که همگی دارای  وجه مشترکی هستند: بیان مساله به زبان ریاضی با ابزار معادلات دیفرانسیل. برای کاربردهای پزشکی معادلات دیفرانسیل جزئی می توانید این لینک را هم ببینید.

تحقیقات بسیاری برای مدل سازی سرطان با استفاده از معادلات دیفرانسیل انجام شده است. این ویدئو را با زیرنویس فارسی ببینید.

برای اطلاع از نمونه های واقعی معادلات دیفرانسیل در شیمی مقاله ۱۲ صفحه ای معادلات دیفرانسیل مرتبه اول در شیمی را مطالعه کنید. در این مقاله برخی از فرایندهای شیمیایی توسط معادلات دیفرانسیل مدل سازی شده اند.

تلاش می کنیم به زودی اطلاعاتی از کاربردهای معادلات در مهندسی عمران، مهندسی هسته ای، مهندسی برق، مهندسی مکانیک سیالات، مهندسی هوافضا و … در سایت قرار دهیم.

استفاده از مطالب سایت ریاضیات مدرن با ذکر منبع “ریاضیات مدرن” بلامانع است.